Mr. Keynes and the 'Classics' a Century Later: Reviewing the IS-LM model

Marco Veronese Passarella

- University of L'Aquila and University of Leeds -

Download this presentation from:

https://www.marcopassarella.it/en/economics-history-and/

Introduction

 The IS-LM model is by far the most popular pedagogical and policy tool in macroeconomics since its first formulation (Hicks, 1937; Modigliani, 1944).

Introduction

- The IS-LM model is by far the most popular pedagogical and policy tool in macroeconomics since its first formulation (Hicks, 1937; Modigliani, 1944).
- All the most influential economics textbooks rely on it (Blanchard, 2021; Mankiw, 2016; Samuelson and Nordhaus, 1998).

INTRODUCTION

- The IS-LM model is by far the most popular pedagogical and policy tool in macroeconomics since its first formulation (Hicks, 1937; Modigliani, 1944).
- All the most influential economics textbooks rely on it (Blanchard, 2021; Mankiw, 2016; Samuelson and Nordhaus, 1998).
- World-leading macroeconomists still use it to support their analyses in their blogs and tweets (e.g., Krugman, Simon Wren-Lewis).

INTRODUCTION

- The IS-LM model is by far the most popular pedagogical and policy tool in macroeconomics since its first formulation (Hicks, 1937; Modigliani, 1944).
- All the most influential economics textbooks rely on it (Blanchard, 2021; Mankiw, 2016; Samuelson and Nordhaus, 1998).
- World-leading macroeconomists still use it to support their analyses in their blogs and tweets (e.g., Krugman, Simon Wren-Lewis).
- Reason for success: useful and agile tool to study the most likely implications (trade-offs) of policy shocks in the short run.

 The IS-LM only facilitates comparative statics exercises, allowing the identification of the new equilibrium position following a shock but not the trajectory followed by the economy. No dynamics.

- The IS-LM only facilitates comparative statics exercises, allowing the identification of the new equilibrium position following a shock but not the trajectory followed by the economy. No dynamics.
- General equilibrium condition derived by intersecting a flow curve (the IS) with a stock curve (the LM).

- The IS-LM only facilitates comparative statics exercises, allowing the identification of the new equilibrium position following a shock but not the trajectory followed by the economy. No dynamics.
- General equilibrium condition derived by intersecting a flow curve (the IS) with a stock curve (the LM).
- Its accounting structure is, at best, incomplete (e.g., Godley and Shaikh, 2002; Wray, 2019), as flows impact on stocks and stocks, in turn, produce flows (Hicks, 1981).

- The IS-LM only facilitates comparative statics exercises, allowing the identification of the new equilibrium position following a shock but not the trajectory followed by the economy. No dynamics.
- General equilibrium condition derived by intersecting a flow curve (the IS) with a stock curve (the LM).
- Its accounting structure is, at best, incomplete (e.g., Godley and Shaikh, 2002; Wray, 2019), as flows impact on stocks and stocks, in turn, produce flows (Hicks, 1981).
- RQs: is the IS-LM model an acceptable (stylized) representation of a capitalist economy? What happens when we fix it? Can we develop a SFC dynamic IS-LM model? Policy implications?

- Two financial assets: money and T-bills.

- Two financial assets: money and T-bills.
- Neither firms nor the government hold idle balances.

- Two financial assets: money and T-bills.
- Neither firms nor the government hold idle balances.
- Circulating capital only.

- Two financial assets: money and T-bills.
- Neither firms nor the government hold idle balances.
- Circulating capital only.

- Two financial assets: money and T-bills.
- Neither firms nor the government hold idle balances.
- Circulating capital only.

	Households	Firms	Central bank	Government	Σ
Money (liquidity)	+L		-M		0
Bills	$+B_h$		$+B_{cb}$	$-B_s$	0
Wealth	-V			+V	0
Σ	0	0	0	0	0

Transactions and changes in stocks

 Households are the final recipients of production firms' incomes net of investment funding.

Transactions and changes in stocks

- Households are the final recipients of production firms' incomes net of investment funding.
- Taxes are only levied on households' gross income.

Transactions and changes in stocks

- Households are the final recipients of production firms' incomes net of investment funding.
- Taxes are only levied on households' gross income.
- The latter includes interest payments received on their holdings of T-bills in addition to labor incomes.

Transactions and changes in Stocks

- Households are the final recipients of production firms' incomes net of investment funding.
- Taxes are only levied on households' gross income.
- The latter includes interest payments received on their holdings of T-bills in addition to labor incomes.
- There is no banking sector: firms entirely fund their investment using internal funds.

Transactions and changes in Stocks

- Households are the final recipients of production firms' incomes net of investment funding.
- Taxes are only levied on households' gross income.
- The latter includes interest payments received on their holdings of T-bills in addition to labor incomes.
- There is no banking sector: firms entirely fund their investment using internal funds.
- Note: saving (as algebraic sum of incomes and expenditures) must match the total Δs in net wealth components.

THE TRANSACTIONS-FLOW MATRIX

	Households	Firms		Central bank	Government	Σ
		Current	Capital			
Consumption	-C	+ <i>C</i>				0
Investment		+I	-I			0
Gov. spending		+G			-G	0
Income	+W	-Y	+A			0
Taxes	-T				+T	0
Interest paym.	$+r_{-1}\cdot B_{-1}$			$+r_{-1}\cdot B_{cb,-1}$	$-r_{-1}\cdot B_{s,-1}$	0
Seign. income				$-r_{-1}\cdot B_{cb,-1}$	$+r_{-1}\cdot B_{cb,-1}$	0
Δ in money	$-\Delta L$			$+\Delta M$		0
Δ in bills	$-\Delta B_h$			$-\Delta B_{cb}$	$+\Delta B_s$	0
Σ	0	0	0	0	0	0

- Main equations of the (SFC) IS-LM model

- Main equations of the (SFC) IS-LM model

(1) Investment:
$$I = \iota_0 - \iota_1 \cdot r_{-1} + \iota_2 \cdot Y_{-1}$$

- Main equations of the (SFC) IS-LM model
 - (1) Investment: $I = \iota_0 \iota_1 \cdot r_{-1} + \iota_2 \cdot Y_{-1}$

(2B) Saving:
$$S = (Y - A + r_{-1} \cdot B_{h,-1} - T) \cdot (1 - \alpha_1) - \alpha_2 \cdot V_{-1}$$

- Main equations of the (SFC) IS-LM model
 - (1) Investment: $I = \iota_0 \iota_1 \cdot r_{-1} + \iota_2 \cdot Y_{-1}$
 - (2B) Saving: $S = (Y A + r_{-1} \cdot B_{h,-1} T) \cdot (1 \alpha_1) \alpha_2 \cdot V_{-1}$
 - (8) Demand for liquidity: $L = \lambda_0 \cdot V + \lambda_1 \cdot YD \lambda_2 \cdot r \cdot V$

- Main equations of the (SFC) IS-LM model
 - (1) Investment: $I = \iota_0 \iota_1 \cdot r_{-1} + \iota_2 \cdot Y_{-1}$
 - (2B) Saving: $S = (Y A + r_{-1} \cdot B_{h,-1} T) \cdot (1 \alpha_1) \alpha_2 \cdot V_{-1}$
 - (8) Demand for liquidity: $L = \lambda_0 \cdot V + \lambda_1 \cdot YD \lambda_2 \cdot r \cdot V$
- Upward-sloping LM curve (traditional closure)

- Main equations of the (SFC) IS-LM model
 - (1) Investment: $I = \iota_0 \iota_1 \cdot r_{-1} + \iota_2 \cdot Y_{-1}$
 - (2B) Saving: $S = (Y A + r_{-1} \cdot B_{h,-1} T) \cdot (1 \alpha_1) \alpha_2 \cdot V_{-1}$
 - (8) Demand for liquidity: $L = \lambda_0 \cdot V + \lambda_1 \cdot YD \lambda_2 \cdot r \cdot V$
- Upward-sloping LM curve (traditional closure)
 - (14A) Endogenous interest rate: $r = \frac{\lambda_0 \cdot V + \lambda_1 \cdot YD M}{\lambda_2 \cdot V}$

- Main equations of the (SFC) IS-LM model
 - (1) Investment: $I = \iota_0 \iota_1 \cdot r_{-1} + \iota_2 \cdot Y_{-1}$
 - (2B) Saving: $S = (Y A + r_{-1} \cdot B_{h,-1} T) \cdot (1 \alpha_1) \alpha_2 \cdot V_{-1}$
 - (8) Demand for liquidity: $L = \lambda_0 \cdot V + \lambda_1 \cdot YD \lambda_2 \cdot r \cdot V$
- Upward-sloping LM curve (traditional closure)
- (14A) Endogenous interest rate: $r = \frac{\lambda_0 \cdot V + \lambda_1 \cdot YD M}{\lambda_2 \cdot V}$
- (15A) Exogenous money supply $M = \overline{M}$

- Main equations of the (SFC) IS-LM model
 - (1) Investment: $I = \iota_0 \iota_1 \cdot r_{-1} + \iota_2 \cdot Y_{-1}$
 - (2B) Saving: $S = (Y A + r_{-1} \cdot B_{h,-1} T) \cdot (1 \alpha_1) \alpha_2 \cdot V_{-1}$
 - (8) Demand for liquidity: $L = \lambda_0 \cdot V + \lambda_1 \cdot YD \lambda_2 \cdot r \cdot V$
- Upward-sloping LM curve (traditional closure)
 - (14A) Endogenous interest rate: $r = \frac{\lambda_0 \cdot V + \lambda_1 \cdot YD M}{\lambda_2 \cdot V}$
 - (15A) Exogenous money supply $M = \overline{M}$

Note 1: $\lambda_0=$ autonomous liquidity to wealth ratio ; $\lambda_1=$ transactions motive; $\lambda_2=$ elasticity of L to interest rate (< 0).

- Main equations of the (SFC) IS-LM model
 - (1) Investment: $I = \iota_0 \iota_1 \cdot r_{-1} + \iota_2 \cdot Y_{-1}$
 - (2B) Saving: $S = (Y A + r_{-1} \cdot B_{h,-1} T) \cdot (1 \alpha_1) \alpha_2 \cdot V_{-1}$
 - (8) Demand for liquidity: $L = \lambda_0 \cdot V + \lambda_1 \cdot YD \lambda_2 \cdot r \cdot V$
- Upward-sloping LM curve (traditional closure)
- (14A) Endogenous interest rate: $r = \frac{\lambda_0 \cdot V + \lambda_1 \cdot YD M}{\lambda_2 \cdot V}$
- (15A) Exogenous money supply $M = \overline{M}$
- Note 1: $\lambda_0=$ autonomous liquidity to wealth ratio ; $\lambda_1=$ transactions motive; $\lambda_2=$ elasticity of L to interest rate (< 0).
- Note 2: $r \ge 0$ if $\lambda_0 \cdot V + \lambda_1 \cdot YD \ge M$.

- Flat LM curve (Blanchard's closure):

- Flat LM curve (Blanchard's closure):

(14B) Exogenous interest rate: $r = \bar{r}$

- Flat LM curve (Blanchard's closure):
 - (14B) Exogenous interest rate: $r = \bar{r}$
 - (15B) Endogenous money supply: $M = M_{-1} + \Delta B_{cb}$

- Flat LM curve (Blanchard's closure):
 - (14B) Exogenous interest rate: $r = \bar{r}$
 - (15B) Endogenous money supply: $M = M_{-1} + \Delta B_{cb}$

- Flat LM curve (Blanchard's closure):

(14B) Exogenous interest rate: $r = \bar{r}$

(15B) Endogenous money supply: $M = M_{-1} + \Delta B_{cb}$

ANALYTICAL SOLUTIONS

 Imposing the condition of balanced budget for the government (Godley and Lavoie, 2007), we can derive the (quasi) steady-state value of national income:

ANALYTICAL SOLUTIONS

 Imposing the condition of balanced budget for the government (Godley and Lavoie, 2007), we can derive the (quasi) steady-state value of national income:

(13S)
$$Y^* = \left\{ \frac{G}{\theta} + r \cdot \left[\frac{B_h^* \cdot (1-\theta)}{\theta} - \iota_1 \right] + \iota_0 \right\} \cdot \frac{1}{1-\iota_2}$$

ANALYTICAL SOLUTIONS

 Imposing the condition of balanced budget for the government (Godley and Lavoie, 2007), we can derive the (quasi) steady-state value of national income:

(13S)
$$Y^* = \left\{ \frac{G}{\theta} + r \cdot \left[\frac{B_h^* \cdot (1-\theta)}{\theta} - \iota_1 \right] + \iota_0 \right\} \cdot \frac{1}{1-\iota_2}$$

a) if $\iota_1 > B_h^* \cdot (1-\theta)/\theta$, a higher interest rate (> 0) is associated with a lower level of national income in the M/R (standard assumption).

ANALYTICAL SOLUTIONS

 Imposing the condition of balanced budget for the government (Godley and Lavoie, 2007), we can derive the (quasi) steady-state value of national income:

(13S)
$$Y^* = \left\{ \frac{G}{\theta} + r \cdot \left[\frac{B_h^* \cdot (1-\theta)}{\theta} - \iota_1 \right] + \iota_0 \right\} \cdot \frac{1}{1-\iota_2}$$

- a) if $\iota_1 > B_h^* \cdot (1-\theta)/\theta$, a higher interest rate (> 0) is associated with a lower level of national income in the M/R (standard assumption).
- b) if $\iota_1 < B_h^* \cdot (1-\theta)/\theta$, a higher interest rate (> 0) is associated with a higher level of national income in the M/R.

ANALYTICAL SOLUTIONS

 Imposing the condition of balanced budget for the government (Godley and Lavoie, 2007), we can derive the (quasi) steady-state value of national income:

(13S)
$$Y^* = \left\{ \frac{G}{\theta} + r \cdot \left[\frac{B_h^* \cdot (1-\theta)}{\theta} - \iota_1 \right] + \iota_0 \right\} \cdot \frac{1}{1-\iota_2}$$

- a) if $\iota_1 > B_h^* \cdot (1-\theta)/\theta$, a higher interest rate (> 0) is associated with a lower level of national income in the M/R (standard assumption).
- b) if $\iota_1 < B_h^* \cdot (1-\theta)/\theta$, a higher interest rate (> 0) is associated with a higher level of national income in the M/R.
- c) if $\iota_1 = B_h^* \cdot (1 \theta)/\theta$, the steady-state level of national income is unaffected by the interest rate.

Model parameters and exogenous variables

Symbol	Description	Value
ι0	Autonomous investment	2
ι_1	Elasticity of investment to interest rate (absolute value)	20
ι_2	Elasticity of investment to expected demand	0.05
$lpha_1$	Marginal propensity to consume out of disposable income	0.6
$lpha_2$	Marginal propensity to consume out of net wealth	0.4
λ_0	Autonomous share of liquidity demand to disposable income	0.1
λ_1	Elasticity of liquidity demand to disposable income	0.1
λ_2	Elasticity of liquidity demand to interest rate (absolute value)	2
θ	Average tax rate on income	0.20
G_0	Government expenditure	10
M_0	Initial value of money supply	1
\ \bar{r}	Target policy rate	0.03

Traverse and steady-state: baseline dynamics

TIGHT MONETARY POLICY SHOCKS

b) Demand components following tight monetary policy
 with exogenous money (upward-sloping LM)

EXPANSIONARY MONETARY POLICIES

- A tighter monetary policy implies a higher level of national income.

- A tighter monetary policy implies a higher level of national income.
- A higher interest rate implies a lower investment but also increased interest payments from the government to the private sector, which support consumption.

- A tighter monetary policy implies a higher level of national income.
- A higher interest rate implies a lower investment but also increased interest payments from the government to the private sector, which support consumption.
- Note: this holds only as long as the interest rate is positive...

- A tighter monetary policy implies a higher level of national income.
- A higher interest rate implies a lower investment but also increased interest payments from the government to the private sector, which support consumption.
- Note: this holds only as long as the interest rate is positive...
- This raises questions about quantitative policies: their effectiveness is neither automatic nor linear.

- A tighter monetary policy implies a higher level of national income.
- A higher interest rate implies a lower investment but also increased interest payments from the government to the private sector, which support consumption.
- Note: this holds only as long as the interest rate is positive...
- This raises questions about quantitative policies: their effectiveness is neither automatic nor linear.
- Geometrically, a tighter monetary policy shifts the LM curve upwards (standard story). However, it also shifts the IS upwards! The final effect is ambiguous...

- Main equations:

- Main equations:
- (14) Production function: $Y_n = A_k \cdot K^{\alpha} \cdot N^{(1-\alpha)}$

- Main equations:
- (14) Production function: $Y_n = A_k \cdot K^{\alpha} \cdot N^{(1-\alpha)}$
- (16) Unit price: $P = P_{-1} \cdot \exp[\gamma_p \cdot (Y_{-1} Y_{n,-1})]$

- Main equations:
- (14) Production function: $Y_n = A_k \cdot K^{\alpha} \cdot N^{(1-\alpha)}$
- (16) Unit price: $P = P_{-1} \cdot \exp[\gamma_p \cdot (Y_{-1} Y_{n,-1})]$
- (17) Real capital stock: $K = K_{-1} + I \delta_k \cdot K_{-1}$

- Main equations:
- (14) Production function: $Y_n = A_k \cdot K^{\alpha} \cdot N^{(1-\alpha)}$
- (16) Unit price: $P = P_{-1} \cdot \exp[\gamma_p \cdot (Y_{-1} Y_{n,-1})]$
- (17) Real capital stock: $K = K_{-1} + I \delta_k \cdot K_{-1}$
- (1M) Real investment: $I = \gamma_k \cdot (K_{-1}^T K_{-1}) + \delta_k \cdot K_{-1}$

- Main equations:
- (14) Production function: $Y_n = A_k \cdot K^{\alpha} \cdot N^{(1-\alpha)}$
- (16) Unit price: $P = P_{-1} \cdot \exp[\gamma_p \cdot (Y_{-1} Y_{n,-1})]$
- (17) Real capital stock: $K = K_{-1} + I \delta_k \cdot K_{-1}$
- (1M) Real investment: $I = \gamma_k \cdot (K_{-1}^T K_{-1}) + \delta_k \cdot K_{-1}$
- (18) Target capital stock: $K^T = \kappa \cdot Y$

- Main equations:
- (14) Production function: $Y_n = A_k \cdot K^{\alpha} \cdot N^{(1-\alpha)}$
- (16) Unit price: $P = P_{-1} \cdot \exp[\gamma_p \cdot (Y_{-1} Y_{n,-1})]$
- (17) Real capital stock: $K = K_{-1} + I \delta_k \cdot K_{-1}$
- (1M) Real investment: $I = \gamma_k \cdot (K_{-1}^T K_{-1}) + \delta_k \cdot K_{-1}$
 - (18) Target capital stock: $K^T = \kappa \cdot Y$
 - (19) Target capital to output ratio: $\kappa = \kappa_0 \kappa_1 \cdot (r_{\rm e,-1} \pi_{-1})$

- Main equations:
- (14) Production function: $Y_n = A_k \cdot K^{\alpha} \cdot N^{(1-\alpha)}$
- (16) Unit price: $P = P_{-1} \cdot \exp[\gamma_p \cdot (Y_{-1} Y_{n,-1})]$
- (17) Real capital stock: $K = K_{-1} + I \delta_k \cdot K_{-1}$
- (1M) Real investment: $I = \gamma_k \cdot (K_{-1}^T K_{-1}) + \delta_k \cdot K_{-1}$
- (18) Target capital stock: $K^T = \kappa \cdot Y$
- (19) Target capital to output ratio: $\kappa = \kappa_0 \kappa_1 \cdot (r_{\rm e,-1} \pi_{-1})$
- (20) Private issues: $E_s = E_{s,-1} + \Delta(P \cdot K)$

- Main equations:
- (14) Production function: $Y_n = A_k \cdot K^{\alpha} \cdot N^{(1-\alpha)}$
- (16) Unit price: $P = P_{-1} \cdot \exp[\gamma_p \cdot (Y_{-1} Y_{n,-1})]$
- (17) Real capital stock: $K = K_{-1} + I \delta_k \cdot K_{-1}$
- (1M) Real investment: $I = \gamma_k \cdot (K_{-1}^T K_{-1}) + \delta_k \cdot K_{-1}$
 - (18) Target capital stock: $K^T = \kappa \cdot Y$
 - (19) Target capital to output ratio: $\kappa = \kappa_0 \kappa_1 \cdot (r_{e,-1} \pi_{-1})$
- (20) Private issues: $E_s = E_{s,-1} + \Delta(P \cdot K)$
- Other equations are either adjusted accordingly or left unchanged.

ADDITIONAL MONETARY POLICY SCHOCKS

 When enriched with dynamics and stock-flow completeness, the IS-LM model no longer exhibits the same qualitative behaviour.

- When enriched with dynamics and stock-flow completeness, the IS-LM model no longer exhibits the same qualitative behaviour.
- The IS bloc of equations and the LM bloc are not independent (see Keynes, 1930).

- When enriched with dynamics and stock-flow completeness, the IS-LM model no longer exhibits the same qualitative behaviour.
- The IS bloc of equations and the LM bloc are not independent (see Keynes, 1930).
- Intersecting the two curves is not even an approximate method. It is a wrong method, generating misleading conclusions.

- When enriched with dynamics and stock-flow completeness, the IS-LM model no longer exhibits the same qualitative behaviour.
- The IS bloc of equations and the LM bloc are not independent (see Keynes, 1930).
- Intersecting the two curves is not even an approximate method. It is a wrong method, generating misleading conclusions.
- Even if it were feasible, controlling monetary aggregates while letting the interest rate fluctuate makes the economy unstable.

- When enriched with dynamics and stock-flow completeness, the IS-LM model no longer exhibits the same qualitative behaviour.
- The IS bloc of equations and the LM bloc are not independent (see Keynes, 1930).
- Intersecting the two curves is not even an approximate method. It is a wrong method, generating misleading conclusions.
- Even if it were feasible, controlling monetary aggregates while letting the interest rate fluctuate makes the economy unstable.
- Instability does not depend on financial markets being more volatile... (Poole, 1970), but rather on the destabilizing effect of the endogenous interest rate.

Thank you

Download this presentation from:

https://www.marcopassarella.it/en/economics-history-and/

