FROM ABSTRACT TO CONCRETE SOME TIPS TO DEVELOP AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

University of Leeds

m.passarella@leeds.ac.uk

June 28, 2018

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

INTRODUCTION

RECLASSIFICAT

DEVELOPING THE MODEL

> UNNING THE MULATIONS

APPENDIX A

Appendix B

OVERVIEW

AN EMPIRICAL SFC MODEL

> Marco VERONESE PASSARELLA

Introduction

RECLASSIFICATION

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

FINAL REMARKS

APPENDIX A

APPENDIX B

References

Introduction

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

Introduction

RECLASSIFICATION

DEVELOPING THE MODEL

SIMULATIONS

I IIVAL IULWIAIO

EFERENCES

AIM & MODEL TYPE

Tips to develop a medium-scale empirical SFC model. A theory-constrained but data-driven method is used. Inspired by Godley & Lavoie (2006) and Burgess et al. (2016).

AIM & MODEL TYPE

Tips to develop a medium-scale empirical SFC model. A theory-constrained but data-driven method is used. Inspired by Godley & Lavoie (2006) and Burgess et al. (2016).

Epistemological status

The model is built upon Eurostat database & SNA. No dynamic optimisation / no representative agent. Macro-accounting approach: evolution of BS and TFM entries under different scenarios.

Reclassific

DEVELOPING THE MODEL

RUNNING THI SIMULATIONS

Appendix A

Appendix B

REFERENCES

AIM & MODEL TYPE

Tips to develop a medium-scale empirical SFC model. A theory-constrained but data-driven method is used. Inspired by Godley & Lavoie (2006) and Burgess et al. (2016).

Epistemological status

The model is built upon Eurostat database & SNA. No dynamic optimisation / no representative agent. Macro-accounting approach: evolution of BS and TFM entries under different scenarios.

PROJECT

Data for Italy are used, but it can be replicated for other countries. Aim: create network of interacting 'personal' SFC models (using R).

SIMULATIONS

PPENDIX B

REFERENCES

A 'PRACTICAL' QUESTION

Increasing popularity of SFCMs since the publication of *Monetary Economics* (Godley & Lavoie 2006). Numerical simulations and cross-breeding with AB and IO. But seldom empirical models.

KUNNING THE SIMULATIONS

A ----- A

Appendix B

REFERENCES

A 'PRACTICAL' QUESTION

Increasing popularity of SFCMs since the publication of *Monetary Economics* (Godley & Lavoie 2006). Numerical simulations and cross-breeding with AB and IO. But seldom empirical models.

NO GENERAL METHOD

Absence of a well-established method to match the standard SFC framework with the SNA and estimate or calibrate coefficients.

IMULATIONS

FINAL REMAR.

Appendix B

REFERENCES

A 'PRACTICAL' QUESTION

Increasing popularity of SFCMs since the publication of *Monetary Economics* (Godley & Lavoie 2006). Numerical simulations and cross-breeding with AB and IO. But seldom empirical models.

NO GENERAL METHOD

Absence of a well-established method to match the standard SFC framework with the SNA and estimate or calibrate coefficients.

Bridging the gap...

...using Eurostat data: a) available and downloadable through pdfetch; b) uniform across countries; c) useful reclassification proposed by Godin (2016).

AN EMPIRICAL SEC MODEL

Marco Veronese Passarella

RECLASSIFICATION

FIRST STEP: THE FULL TFM

Matching SFC TFM with Eurostat accounting.

Entries (Naly, 2015)	Eurostat Code	Non-Financial Corporation S11	Financial Corporations S12	Government S13	Households S14 S15	Rest of World	Total economy (row total) S1
Gross Output	P1	2095694	130440	308245	580440	32	3112819
Intermediate Consumption	P2	-1360170		-90092	-129658	0	-1634349
Taxes on Product	D21	-1300170		189354	-125000	2251	191605
Subsidies on Products	D31	0		-24469	0		-24636
Memo: GDP	DOI	735524	76011	381038	450782		1645439
Consumption	P3	0		-311639	-1001014		-1312653
Exports	P6	0	0	0	0	-493934	-493934
Imports	P7	0	0	0	0	446042	446042
Investment	P5 (G)	-149558	-4429	-36959	-93949		-284895
Total Production		585966	71582	32440	-644181	-45808	0
Wages	D1	-411085	-32356	-161998	609723	-4284	0
Taxes on Production and Imports	D2***	-26528	-5735	240236	-18620	-189354	0
Subsidies on Production	D3	4347	4	-28481	3929	20201	0
Dividends	D42	-109941	-1633	4271	114625	-7322	0
Interests payments	D41	-5209	18574	-65237	30759	21113	0
Other property income	D4G*	-11995	-17221	3924	23481	1812	0
Taxes on Income and Wealth	D5	-27869	-6022	241582	-206485	-1206	0
Social Benefits (net of social contributions)	D6**	1273	2461	-113732	112607	-2609	0
Other Current Transfers	D7	-5061	-1075	-6476	-6232		0
Adjustments in Pension Funds	D8	-1272	-2461	0	3733		0
Capital Transfers	D9	18031	8294	-25421	2889		0
Total Transfers		-575309		88668	670409		0
Sum Production and Transfers		10657	34412	121108	26228	-192405	0
Acquisition less consumption of NPNFP	NP	-1535	-18	-420	789		0
Tax - subsidies on product	-D21+D31	0	0	-164885	0		0
Computed Net Lending Position		9123	34394	-44197	27017	-26336	0
Net Lending Position	B9	9123	34394	-44197	27017	-26336	0
Total by sector (column total)		0	0	0	0	0	0

Note: Italy, 2015, current prices, million euro.

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

Introductio

RECLASSIFICATION

DEVELOPING THE MODEL

UNNING THI MULATIONS

A DDENING A

APPENDIX B

REFERENCES

SECOND STEP: 'WHO PAYS WHOM'

Address issues with Figure 1: a) Lines 6 to 9 do no sum up to zero; b) too many entries. Assume firms produce it all!

Entries (Italy, 2015)	Eurostat Code	Non-Financial Corporation		Financial Corporations	Government		Rest of World	Total economy (row total)
	S11	(capital)	S12	S13	S14_S15	S2	S1	
Gross Output	P1	2095694		130440	306245	580440	0	3112819
Intermediate Consumption	P2	-1360170		-54429	-90092	-129658	0	-1634349
Taxes on Product	D21	0		0	189354	0		191605
Subsidies on Products	D31	0		0	-24469	0		-24636
Memo: GDP per sector		735524		76011	381038	450782	2084	1645440
Memo: total GDP	1645440							
GDP Redistribution		-909915	= -Σ	76011		450782		0
Consumption	P3	1312653		0	-311639	-1001014		0
Exports	P6	493934		0	0	0	-493934	0
Imports	P7	-446042		0	0	0	446042	0
Investment	P5 (G)	284895	-149558	-4429	-36959	-93949	0	0
Wages	D1	-411085		-32356	-161998	609723	-4284	0
Taxes on Production and Imports	D2	-26528		-5735	240236	-18620	-189354	0
Subsidies on Production	D3	4347		4	-28481	3929	20201	0
Dividends	D42	-109941		-1633	4271	114625	-7322	0
Interests payments	D41	-5209		18574	-65237	30759	21113	0
Other property income	D4G	-11995		-17221	3924	23481	1812	0
Taxes on Income and Wealth	D5	-27869		-6022	241582	-206485	-1206	0
Social Benefits (net of social contributions)	D6	1273		2461	-113732	112607	-2609	0
Other Current Transfers	D7	-5061		-1075	-6476	-6232	18844	0
Adjustments in Pension Funds	D8	-1272		-2461	0	3733	0	0
Capital Transfers	D9	18031		8294	-25421	2889	-3792	0
Acquisition less consumption of NPNFP	NP	-1535		-18	-420	789	1184	0
Tax - subsidies on product	-D21+D31	0		0	-164885	0	164885	0
Computed Net Lending Position	9123		34394	-44197	27017	-26336	0	
Net Lending Position	B9	9123		34394	-44197	27017	-26336	0
Total by sector (column total)		0		0	0	0	0	

THIRD STEP: MERGING ENTRIES

Merge taxes, transfers and other 'secondary' entries to get the accounting structure of the model.

Entries (Italy, 2015)	Eurostat Code	Non-Financial Corporation		Financial Corporations	Government		Rest of World	Total economy (row total)
		S11	(capital)	S12	S13	S14_S15	S2	S1
GDP Redistribution		-909915			381038	450782	2084	0
Consumption	P3	1312653	1312653		0 -311639		0	0
Exports P6		493934		0	0 0		0 -493934	
Imports	P7	-446042		0	0	0	446042	0
Investment	P5 (G)	284895	-149558	-4429	-36959	-93949	0	0
Wages	D1	-411085		-32356	-161998	609723	-4284	0
Total Taxes	02+05-021	-54397		-11757	292464	-225105	-1206	0
Dividends	D42	-109941		-1633	4271	114625	-7322	0
Interests payments	D41	-5209		18574	-65237	30759	21113	0
Other property income	D4G	-11995		-17221	3924	23481	1812	0
Transfers (subsidies, benefits, etc.)	D3+D6+D7-D31	559		1390	-124220	110304	11967	0
(Change in) funds	D8+D9+NP	15224		5815	-25841	7411	-2608	0
Computed Net Lending Position		9123		34394	-44197	27017	-26336	0
Net Lending Position B9		9123		34394	-44197	27017	-26336	0
Total by sector (row total)	0		0	0	0	0	0	

Note: Italy, 2015, current prices, million euro.

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

Introductio

RECLASSIFICATION

DEVELOPING THE MODEL

JNNING THE MULATIONS

----- D

FOURTH STEP: THE BALANCE SHEET

Narrowed down creating 'other financial assets' composite entry (insurance tech. reserves, derivatives and other).

Entries (Italy, 2015) Eurostz code	Eurostat	Non-Financial Corporations		Financial Corporations			Government			Households			
	code	Assets	Liabilities	Net	Assets	Liabilities	Net	Assets	Liabilities	Net	Assets	Liabilities	Net
Non-financial assets (dwellings)	N1N+N2N	180,249.6	0.0	180,249.6	4,781.2	0.0	4,781.2	54,401.6	0.0	54,401.6	2,518,103.0	0.0	2,518,103.0
Currency and deposits	F2	308,930.0	32,763.0	276,167.0	326,009.0	2,027,611.0	-1,701,602.0	75,877.0	239,722.0	-163,845.0	1,273,045.0	0.0	1,273,045.0
Securities other than shares	F3	57,048.0	145,902.0	-88,854.0	1,675,684.0	540,827.0	1,134,857.0	27,908.0	2,097,250.0	-2,069,342.0	413,008.0	0.0	413,008.0
Loans	F4	18,947.0	1,067,001.0	-1,048,054.0	1,823,350.0	109,846.0	1,713,504.0	94,284.0	177,240.0	-82,956.0	13,707.0	691,961.0	-678,254.0
Shares and other equity	F5	525,651.0	1,666,671.0	-1,141,020.0	632,959.0	475,698.0	157,261.0	128,934.0	0.0	128,934.0	1,447,540.0	0.0	1,447,540.0
Other financial assets													
- Insurance technical reserves	F6	16,896.0	101,556.0	-84,660.0	6,358.0	758,730.0	-752,372.0	1,278.0	3,803.0	-2,525.0	862,636.0	0.0	862,636.0
- Derivatives and empl. stock options	F7	15,425.0	14,307.0	1,118.0	125,954.0	138,737.0	-12,783.0	0.0	31,899.0	-31,899.0	738.0	68.0	670.0
- Other accounts receivable/payable	F8	147,171.0	91,326.0	55,845.0	26,448.0	5,664.0	20,784.0	115,005.0	74,245.0	40,760.0	13,286.0	93,518.0	-80,232.0
Net Worth	BF90			-1,849,208.4			564,430.2			-2,126,471.4			5,756,516.0

Note: Italy, 2015, current prices, million euro.

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

INTRODUCTION

RECLASSIFICATION

DEVELOPING THE MODEL

UNNING THE MULATIONS

INAL REMARK

PPENDIX A

FEATURES AND ASSUMPTIONS

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

Introduction

RECLASSIFICATION

DEVELOPING THE MODEL

SIMULATIONS

PINAL REMAP

PPENDIX B

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

Introduction

Reclassifica

DEVELOPING THE MODEL

SIMULATIONS

Appendix B

REFERENCES

FEATURES AND ASSUMPTIONS

Discrete-time macro (econometric) model. 5 sectors: households, NFCs, government, banks, foreign sector

SIMULATIONS

DDENDIV D

EFERENCES

- Discrete-time macro (econometric) model. 5 sectors: households, NFCs, government, banks, foreign sector
- Eurostat data and stock-flow consistent framework (ESSFC)

SIMULATIONS

. .

Appendix B

REFERENCES

4 D > 4 A > 4 B > 4 B > B > 9 Q C

- Discrete-time macro (econometric) model. 5 sectors: households, NFCs, government, banks, foreign sector
- Eurostat data and stock-flow consistent framework (ESSFC)
- Demand-led both in the short- and long-run

SIMULATIONS

A property A

A DDENIDIV D

REFERENCES

4 D > 4 A > 4 B > 4 B > B 9 Q C

- Discrete-time macro (econometric) model. 5 sectors: households, NFCs, government, banks, foreign sector
- Eurostat data and stock-flow consistent framework (ESSFC)
- ▶ Demand-led both in the short- and long-run
- ► Constant prices (2010) and national currency (Euro)

- Discrete-time macro (econometric) model. 5 sectors: households, NFCs, government, banks, foreign sector
- Eurostat data and stock-flow consistent framework (ESSFC)
- Demand-led both in the short- and long-run
- Constant prices (2010) and national currency (Euro)
- Output produced by firms only on behalf of other sectors

- Discrete-time macro (econometric) model. 5 sectors: households, NFCs, government, banks, foreign sector
- Eurostat data and stock-flow consistent framework (ESSFC)
- Demand-led both in the short- and long-run
- Constant prices (2010) and national currency (Euro)
- Output produced by firms only on behalf of other sectors
- Distribution is determined by institutional & political factors (β_i)

- Discrete-time macro (econometric) model. 5 sectors: households, NFCs, government, banks, foreign sector
- Eurostat data and stock-flow consistent framework (ESSFC)
- Demand-led both in the short- and long-run
- Constant prices (2010) and national currency (Euro)
- Output produced by firms only on behalf of other sectors
- Distribution is determined by institutional & political factors (β_i)
- Each sector is marked by either a portfolio function or a simple financial investment rule

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

Introduction

RECLASSIFICATION

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

FINAL REMAI

PPENDIX A

Appendix B

Usually, net stocks of financial assets and liabilities

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

INTRODUCTION

RECLASSIFICATION

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

FFENDIA A

Appendix B

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

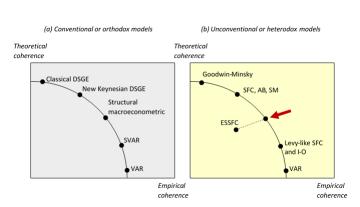
INTRODUCTION

Reclassification

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

IFFENDIA D


- Usually, net stocks of financial assets and liabilities
- Simplifying hypotheses about sectoral portfolio compositions

SIMULATIONS

APPENDIX B

- Usually, net stocks of financial assets and liabilities
- Simplifying hypotheses about sectoral portfolio compositions
- Central bank, commercial banks and NBFIs: integrated and consolidated sector

ESSFC position along Pagan's 'best practice' frontier of models

AN EMPIRICAL SEC MODEL

Marco Veronese Passarella

INTRODUCTION

RECLASSIFICATION

DEVELOPING THE MODEL

RUNNING THE

.

Appendix B

HOUSEHOLDS: SELECTED IDENTITIES

HOUSEHOLDS DISPOSABLE INCOME (FROM TFM)

$$YD = GDP_H + WB - \tau_H + INT_H + T_H + ANN_H$$

where: $GDP_H = \beta_H \cdot GDP$.

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

NTRODUCTION

RECLASSIFIC

DEVELOPING THE MODEL

RUNNING THE IMULATIONS

INAL REMARK

PPENDIX A

PPENDIX B

HOUSEHOLDS: SELECTED IDENTITIES

HOUSEHOLDS DISPOSABLE INCOME (FROM TFM)

$$YD = GDP_H + WB - \tau_H + INT_H + T_H + ANN_H$$

where: $GDP_H = \beta_H \cdot GDP$.

HOUSEHOLD NET WEALTH (FROM BS)

$$NW_H = HOUSE_H + D_H + V_H + B_H + OFIN_H - L_H$$

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

Introduction

Reclassific.

DEVELOPING THE MODEL

UNNING THE MULATIONS

FINAL REMAI

PPENDIX A

APPENDIX B

HOUSEHOLDS: SELECTED IDENTITIES

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

Introduction

RECLASSIFIC

DEVELOPING THE MODEL

MULATIONS

Appendix A

APPENDIX B

EFERENCES

HOUSEHOLDS DISPOSABLE INCOME (FROM TFM)

 $YD = GDP_H + WB - \tau_H + INT_H + T_H + ANN_H$ where: $GDP_H = \beta_H \cdot GDP$.

HOUSEHOLD NET WEALTH (FROM BS)

 $NW_H = HOUSE_H + D_H + V_H + B_H + OFIN_H - L_H$

NET LENDING BY HOUSEHOLDS (KEY VARIABLE)

 $NL_H = YD + NFUNDS - CONS_H - INV_H$

HOUSEHOLDS: SELECTED BEHAVIOURAL

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

NTRODUCTION

RECLASSIFICATION

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

PINAL REMAP

DDENDIV B

EFERENCES

CONSUMPTION FUNCTION

 $C_H = c_0 + c_1 \cdot E(YD) + c_2 \cdot NW_{H,-1} + c_3 \cdot C_{H,-1}$

HOUSEHOLDS: SELECTED BEHAVIOURAL

CONSUMPTION FUNCTION

$$C_H = c_0 + c_1 \cdot E(YD) + c_2 \cdot NW_{H,-1} + c_3 \cdot C_{H,-1}$$

HOUSEHOLD INVESTMENT

$$INV_{H} = \vartheta_{1} \cdot INV_{H,-1} + \vartheta_{2} \cdot L_{H,-1} + \vartheta_{3} \cdot HOUSE_{H,-1} +$$

$$+ \vartheta_{4} \cdot YD_{H,-1} + \vartheta_{5} \cdot E(r_{H})$$

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

INTRODUCTION

Reclassifica

DEVELOPING THE MODEL

MULATIONS

.

ADDENDIV B

CONSUMPTION FUNCTION

$$C_H = c_0 + c_1 \cdot E(YD) + c_2 \cdot NW_{H,-1} + c_3 \cdot C_{H,-1}$$

HOUSEHOLD INVESTMENT

$$INV_{H} = \vartheta_{1} \cdot INV_{H,-1} + \vartheta_{2} \cdot L_{H,-1} + \vartheta_{3} \cdot HOUSE_{H,-1} +$$

$$+ \vartheta_{4} \cdot YD_{H,-1} + \vartheta_{5} \cdot E(r_{H})$$

Demand for mortgages & other loans

$$L_{H} = L_{H,-1} + \phi_1 \cdot YD_{-1} + \phi_2 \cdot HOUSE_{H,-1} + \phi_3 \cdot INV_{H,-1}$$

HOUSEHOLDS: PORTFOLIO CHOICE

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

NTRODUCTION

RECLASSIFICA

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

FINAL REMAI

PPENDIX B

REFERENCES

EQUITY & SHARES

$$\frac{V_{H}}{E(NFW_{H})} = \lambda_{1,0}^{H} + \lambda_{1,1}^{H} \cdot E(r_{V}) + \lambda_{1,2}^{H} \cdot \frac{E(YD_{H})}{E(NFW_{H})} + \lambda_{1,3}^{H} \cdot E(r_{BA})$$

where $\lambda_{1,j}$ are empirically estimated. The same goes for D_H and B_H . Note: $r_D=0$.

SIMULATIONS

DDENDIY A

Appendix B

EFERENCES

EQUITY & SHARES

$$\frac{V_{H}}{E(NFW_{H})} = \lambda_{1,0}^{H} + \lambda_{1,1}^{H} \cdot E(r_{V}) + \lambda_{1,2}^{H} \cdot \frac{E(YD_{H})}{E(NFW_{H})} + \lambda_{1,3}^{H} \cdot E(r_{BA})$$

where $\lambda_{1,j}$ are empirically estimated. The same goes for D_H and B_H . Note: $r_D=0$.

OTHER FINANCIAL ASSETS

$$OFIN_H = \sigma_{OFIN}^H \cdot NW_H$$

When residual correction mechanism is used, $OFIN_H$ is redefined as the residual share (σ_{OFIN}^H) of net wealth.

NFCs: Selected identities

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

Introduction

RECLASSIFICATION

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

I IIVAL ILLMAN

----- D

EFERENCES

Gross Domestic Product

 $GDP = Y - CONS_{INT} + \tau_P^{NET}$

NFCs: SELECTED IDENTITIES

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

NTRODUCTION

RECLASSIFICATION

DEVELOPING THE MODEL

IMULATIONS

A DDENIDIV A

Appendix D

REFERENCES

Gross Domestic Product

 $GDP = Y - CONS_{INT} + \tau_P^{NET}$

AGGREGATE DEMAND

 $Y_{AD} = CONS_H + CONS_G + INV + CONS_{INT} + EXP - IMP - \tau_T^{NET}$

NFCs: Selected identities

An Empirical SFC Model

> Marco Veronese Passarella

NTRODUCTION

RECLASSIFICATION

DEVELOPING THE MODEL

IMULATIONS

APPENDIX A

Appendix B

EFERENCES

Gross Domestic Product

$$GDP = Y - CONS_{INT} + \tau_P^{NET}$$

AGGREGATE DEMAND

$$Y_{AD} = CONS_H + CONS_G + INV + CONS_{INT} + EXP - IMP - \tau_T^{NET}$$

NET LENDING BY NFCS

$$NL_F = \Pi_{FU} - INV_F$$

NFCs: selected behavioural

 $INV = K_{-1} \cdot (g_K + \delta_K)$

Total investment

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

Introduction

RECLASSIFICATION

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

FINAL REMAR

_

APPENDIX B

EFERENCES

FINAL REMARKS

Appendix A

APPENDIX D

REFERENCES

TOTAL INVESTMENT

$$INV = K_{-1} \cdot (g_K + \delta_K)$$

GROWTH RATE OF CAPITAL

$$g_K = \gamma_Y + \gamma_U \cdot E\left(\frac{Y}{K}\right) + \gamma_\Pi \cdot E\left(\frac{\Pi_F}{K}\right) - \gamma_Z \cdot E(r_Z) - \gamma_R \cdot E(r_{L,F})$$

MODEL.

Total investment

$$INV = K_{-1} \cdot (g_K + \delta_K)$$

GROWTH RATE OF CAPITAL

$$g_K = \gamma_Y + \gamma_U \cdot E\left(\frac{Y}{K}\right) + \gamma_\Pi \cdot E\left(\frac{\Pi_F}{K}\right) - \gamma_Z \cdot E(r_Z) - \gamma_R \cdot E(r_{L,F})$$

IMPORT

$$\textit{IMP} = \textit{IMP}_{-1} \cdot expigg(\mu_1 + \mu_2 \cdot ln\Big(rac{Y}{Y_{-1}}\Big) + \mu_3 \cdot (\textit{NER} - \textit{NER}_{-1})igg)$$

NFCs: SUPPLY SIDE?

An Empirical SFC Model

Marco Veronese Passarella

Introductio

RECLASSIFICATION

DEVELOPING THE MODEL

RUNNING THE IMULATIONS

FINAL REMARI

PPENDIX A

PPENDIX B

EFERENCES

LEONTIEF FUNCTION

$Y_n = min(Y_n^L, Y_n^K)$

NFCs: SUPPLY SIDE?

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

Introduction

RECLASSIFICATION

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

PINAL REMAR

Appendix B

REFERENCES

LEONTIEF FUNCTION

$$Y_n = min(Y_n^L, Y_n^K)$$

where:

$$\log(Y_n^L) = \nu_0^L + \nu_1^L \cdot \log(N) + \nu_2^L \cdot t$$

I IIVAL ILLMIAIC

Appendix B

REFERENCES

LEONTIEF FUNCTION

$$Y_n = min(Y_n^L, Y_n^K)$$

where:

$$\log(Y_n^L) = \nu_0^L + \nu_1^L \cdot \log(N) + \nu_2^L \cdot t$$

and:

$$\log(Y_n^K) = \nu_0^K + \nu_1^K \cdot \log(K) + \nu_2^K \cdot t$$

$$Y_n = min(Y_n^L, Y_n^K)$$

where:

$$\log(Y_n^L) = \nu_0^L + \nu_1^L \cdot \log(N) + \nu_2^L \cdot t$$

and:

$$\log(Y_n^K) = \nu_0^K + \nu_1^K \cdot \log(K) + \nu_2^K \cdot t$$

Note: 'normal times'; used to determine p_Y and p_K , not Y.

NET LENDING BY OTHER SECTORS

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

INTRODUCTION

Reclassification

DEVELOPING THE MODEL

SIMULATIONS

.

APPENDIX D

EFERENCES

GOVERNMENT

 $NL_G = GOV_{REV} - GOV_{SP} - INT_G$

NET LENDING BY OTHER SECTORS

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

Introduction

RECLASSIFICATION

DEVELOPING THE MODEL

UNNING THE
IMULATIONS

APPENDIX B

REFERENCES

GOVERNMENT

 $NL_G = GOV_{REV} - GOV_{SP} - INT_G$

BANKS & NBFIS

 $NL_B = \Pi_B - DIV_B - INV_B$

NET LENDING BY OTHER SECTORS

AN EMPIRICAL SEC MODEL

> Marco VERONESE PASSARELLA

DEVELOPING THE MODEL.

GOVERNMENT

 $NL_G = GOV_{REV} - GOV_{SP} - INT_G$

BANKS & NBFIS

 $NL_B = \Pi_B - DIV_B - INV_B$

Rest of the world

 $NL_{RoW} = -(NL_H + NL_F + NL_G + NL_B)$

Cross-sector holdings and payments

WHO HOLDS WHAT

Sectoral portfolios are different in terms of asset types' composition (shares, securities, deposits). However, each sector i (e.g. government) holds the same proportion of x-type assets (e.g. bonds) issued by j to total x. Coherent with the hypothesis that x-type assets carry all the same average return rate.

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

INTRODUCTIO

Reclassific

DEVELOPING THE MODEL

Running the simulations

TINAL REMAR

----- D

APPENDIA D

EFERENCES

RECLASSIFIC

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

A A

APPENDIX A

APPENDIX B

REFERENCES

WHO HOLDS WHAT

Sectoral portfolios are different in terms of asset types' composition (shares, securities, deposits). However, each sector i (e.g. government) holds the same proportion of x-type assets (e.g. bonds) issued by j to total x. Coherent with the hypothesis that x-type assets carry all the same average return rate.

WHO PAYS WHOM

Seldom dividends received by *i* mirror its holdings. Two steps: *a*) total dividends received by *i* are corrected to fit empirical evidence ($DIV_i = \epsilon_i \cdot DIV_{TOT} \cdot V_i / V_{TOT}$, where ϵ_i is the correction coefficient); *b*) each 'issuing' sector *j* pays the same proportion ($\delta_j = DIV_j / DIV_{TOT}$) of total dividends to every other sector (so: $DIV_{j,i} = \delta_j \cdot DIV_i$). The same goes for interest payments.

Data estimation and calibration

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

Introductio

RECLASSIFIC

DEVELOPING THE MODEL

SIMULATIONS

PPENDIX B

REFERENCES

METHODS

Initial stocks & lagged variables are set at 1996 value. Unknown coefficients can be: a) estimated; b) calibrated = data; c) calibrated = literature; d) fine-tuned to create baseline. Theoretical SFCMs are set up via c and d. ESSFC coefficients are defined by a and b.

DATA ESTIMATION AND CALIBRATION

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

Introduction

Reclassific

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

APPENDIX A

REFERENCES

METHODS

Initial stocks & lagged variables are set at 1996 value. Unknown coefficients can be: a) estimated; b) calibrated = data; c) calibrated = literature; d) fine-tuned to create baseline. Theoretical SFCMs are set up via c and d. ESSFC coefficients are defined by a and b.

Dataset

1996-2016, annual, by sector, constant prices (2010). *Pros*: uniformity, simplify coding. *Cons*: low frequency, short.

METHODS

Initial stocks & lagged variables are set at 1996 value. Unknown coefficients can be: a) estimated; b) calibrated = data; c) calibrated = literature; d) fine-tuned to create baseline. Theoretical SFCMs are set up via c and d. ESSFC coefficients are defined by a and b.

DATASET

1996-2016, annual, by sector, constant prices (2010). Pros: uniformity, simplify coding. Cons: low frequency, short.

ESTIMATION

Key equations: coefficients estimated one at time by simple OLS. *Pros*: simplify coding (intermediate step). *Cons*: endogeneity, spurious correlation. Note: MOVAV for several key exogenous ratios.

SOFTWARE TECHNICALITIES

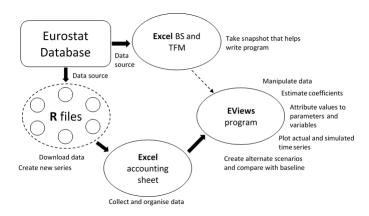
AN EMPIRICAL SEC MODEL

Marco Veronese Passarella

NTRODUCTION

RECLASSIFICA

DEVELOPING THE MODEL


RUNNING THE SIMULATIONS

FINAL REMA

Appendix A

REFERENCES

PROGRAMS' STRUCTURE

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

A --- --- A

APPENDIX B

REFERENCES

FITTING PAST DATA AND FORECASTING

Residuals assumed to reduce steadily up until t_0 and are unwound afterwards. For $t \le t_0$, the estimate value of x, corrected to improve the fit, is:

$$x_t^* = e^{-\mu \cdot \frac{t}{t_0 - t}} \cdot (x_t^f - \overline{x}_t) + \overline{x}_t \tag{1}$$

where x_t^f is the forecast value of x at t and \overline{x}_t is the actual (average) value of x.

FITTING PAST DATA AND FORECASTING

Residuals assumed to reduce steadily up until t_0 and are unwound afterwards. For $t \leq t_0$, the estimate value of x, corrected to improve the fit, is:

$$x_t^* = e^{-\mu \cdot \frac{t}{t_0 - t}} \cdot (x_t^f - \overline{x}_t) + \overline{x}_t \tag{1}$$

where x_t^f is the forecast value of x at t and \overline{x}_t is the actual (average) value of x.

So,
$$x_t^* \to x_t^f$$
, for $t \to 0$; while $x_t^* \to \overline{x}_t$ (or x_t) for $t \to t_0$.

APPENDIX A

Appendix B

References

FITTING PAST DATA AND FORECASTING (CONT'D)

For $t > t_0$, the estimate value of x, corrected to smooth the transition, is:

$$x_t^* = e^{-\mu \cdot (t - t_0)} \cdot (\bar{x}_t - x_t^f) + x_t^f$$
 (2)

So, $x_t^* \to \overline{x}_t$ for $t \to t_0$; while $x_t^* \to x_t^f$, for $t \to +\infty$.

FITTING PAST DATA AND FORECASTING (CONT'D)

For $t > t_0$, the estimate value of x, corrected to smooth the transition, is:

$$x_t^* = e^{-\mu \cdot (t - t_0)} \cdot (\overline{x}_t - x_t^f) + x_t^f$$
 (2)

So, $x_t^* \to \overline{x}_t$ for $t \to t_0$; while $x_t^* \to x_t^f$, for $t \to +\infty$.

Future (predicted) residuals are allowed to increase gradually. Model's forecast value departs gradually from the last observed (average) value.

FITTING PAST DATA AND FORECASTING (CONT'D)

This simple mechanism creates a moving ceiling for residuals, which: a) improve artificially estimates of stochastic variables; b) reset identities (e.g. net lending).

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

INTRODUCTION

RECLASSIFICA

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

INAL REMAR

.....

FITTING PAST DATA AND FORECASTING (CONT'D)

This simple mechanism creates a moving ceiling for residuals, which: a) improve artificially estimates of stochastic variables; b) reset identities (e.g. net lending).

Note: option (b) requires identifying a 'residual' or 'buffer' variable to absorb the estimation difference (i.e. $x_t^* - x_t^f$). 'Adjustment in funds' is used by ESSFC.

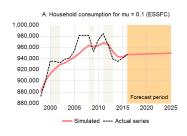
AN EMPIRICAL SFC MODEL

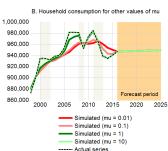
Marco Veronese Passarella

INTRODUCTIO

Reclassific.

DEVELOPING THE MODEL


RUNNING THE SIMULATIONS


'INAL REMARKS

APPENDIX A

REFERENCES

FITTING PAST DATA AND FORECASTING (CONT'D)

AN EMPIRICAL SEC MODEL

Marco Veronese Passarella

Introductio

RECLASSIFIC

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

PPENDIA A

PPPPPPP

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

A ----- A

APPENDIX B

EFERENCES

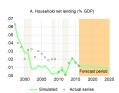
FITTING PAST DATA AND FORECASTING (CONT'D)

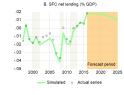
Possible capital gains/losses (revaluation effect) are assumed away on government bonds. As for other financial and real assets, the revaluation effect is automatically accounted for, as stocks at time t are defined as stocks at time t-1 plus changes in stocks' value from t-1 to t.

NTRODUCTIO:

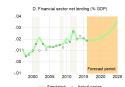
RECLASSIFICA

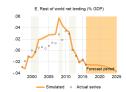
DEVELOPING THE MODEL

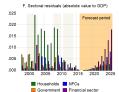

RUNNING THE SIMULATIONS


Final remarks


Appendix A


REFERENCES


Cross-sector financial balances since 1996 (percentage of GDP)



DATA FIT AND FORECAST

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

INTRODUCTION

RECLASSIFICATI

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

'INAL REMARI

I ENDIA II

PPENDIX B

EFERENCES

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

Introduction

RECLASSIFICA

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

.

DDENDIV R

EFERENCES

Data fit and forecast

 Correction mechanism allows perfect match with last observation

RECLASSIFICA

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

Appendix B

REFERENCES

4 D > 4 A > 4 B > 4 B > 9 Q Q

- Correction mechanism allows perfect match with last observation
- Each crisis affects ESSFC predicting power (pikes in residuals)

FINAL REMARK

PPENDIX B

EFERENCES

- Correction mechanism allows perfect match with last observation
- Each crisis affects ESSFC predicting power (pikes in residuals)
- ► Neither a mere static simulation nor a narrowly-defined dynamic one

FINAL REMARKS

IFPENDIA A

Appendix I

REFERENCES

- Correction mechanism allows perfect match with last observation
- Each crisis affects ESSFC predicting power (pikes in residuals)
- Neither a mere static simulation nor a narrowly-defined dynamic one
- Middle ground: dynamic simulation, but ceiling for residuals and moving averages

FINAL REMARKS

PPENDIX A

Appendix I

REFERENCES

- Correction mechanism allows perfect match with last observation
- Each crisis affects ESSFC predicting power (pikes in residuals)
- ► Neither a mere static simulation nor a narrowly-defined dynamic one
- Middle ground: dynamic simulation, but ceiling for residuals and moving averages
- Medium-run forecast: additional hypotheses on coefficients are required

- Correction mechanism allows perfect match with last observation
- Each crisis affects ESSFC predicting power (pikes in residuals)
- Neither a mere static simulation nor a narrowly-defined dynamic one
- Middle ground: dynamic simulation, but ceiling for residuals and moving averages
- Medium-run forecast: additional hypotheses on coefficients are required
- Useful to impose and compare different scenarios

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

Introductio

RECLASSIFICATIO

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

A nonvious A

PPENDIX B

EFERENCES

ALTERNATIVE SCENARIOS

Three alternative scenarios about government spending:

A populary A

PPENDIX B

REFERENCES

ALTERNATIVE SCENARIOS

Three alternative scenarios about government spending:

▶ Baseline scenario: historical trend (black line)

A DDENIDIV A

Appendix B

REFERENCES

ALTERNATIVE SCENARIOS

Three alternative scenarios about government spending:

- ► Baseline scenario: historical trend (black line)
- ► Austerity: permanent cut in government consumption (-1% of GDP, blue line)

PPENDIX B

REFERENCES

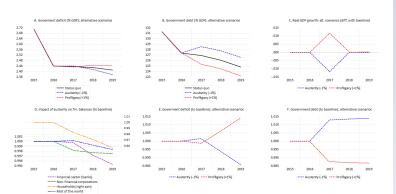
ALTERNATIVE SCENARIOS

Three alternative scenarios about government spending:

- ► Baseline scenario: historical trend (black line)
- ► Austerity: permanent cut in government consumption (-1% of GDP, blue line)
- ▶ Profligacy: increase in government consumption (+1% of GDP, red line)

DEVELOPING THE MODEL

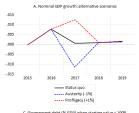
RUNNING THE SIMULATIONS

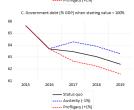

FINAL REMA

Appendix A

Appendix B

REFERENCES


RUNNING THE SIMULATIONS


AN EMPIRICAL SEC MODEL


Marco Veronese PASSABELLA


RUNNING THE

ESSFC reaction following shocks to government spending (cont'd)

RUNNING THE SIMULATIONS

DEVELOPMENTS AND LIMITATIONS

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

INTRODUCTION

RECLASSIFICATI

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

'INAL REMARKS

PPENDIX A

PPENDIX B

EFERENCES

RUNNING THE SIMULATIONS

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

Introduction

Reclassificat

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

PPENDIY R

EFERENCES

DEVELOPMENTS AND LIMITATIONS

Standard deviation is quite high (poor estimates)

Reclassificat

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

pppppppp D

EFERENCES

- Standard deviation is quite high (poor estimates)
- Low frequency and short series

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

PPENDIX B

EFERENCES

- Standard deviation is quite high (poor estimates)
- Low frequency and short series
- Use cointegration, instrumental variables, other econometrics

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

. .

Appendix B

EFERENCES

- Standard deviation is quite high (poor estimates)
- Low frequency and short series
- Use cointegration, instrumental variables, other econometrics
- Use gross stocks and transactions

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

APPENDIX B

REFERENCES

- Standard deviation is quite high (poor estimates)
- Low frequency and short series
- Use cointegration, instrumental variables, other econometrics
- Use gross stocks and transactions
- Reduce aggregation of financial assets

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

APPENDIX B

REFERENCES

- Standard deviation is quite high (poor estimates)
- Low frequency and short series
- Use cointegration, instrumental variables, other econometrics
- ▶ Use gross stocks and transactions
- ► Reduce aggregation of financial assets
- Microfoundations?

RECLASSIFIC

DEVELOPING THE MODEL

RUNNING THE IMULATIONS

Final remarks

PPENDIA A

APPENDIX B

EFERENCES

Despite limitations above, ESSFC can be replicated for a variety of sub-sectors, variables, shocks and alternative scenarios. It allows monitoring stock-flow norms, which can possibly help detect early signs of economic & financial fragility and crises.

MODEL MODEL

RUNNING THE SIMULATIONS

Final remarks

APPENDIX A

REFERENCES

▶ Despite limitations above, ESSFC can be replicated for a variety of sub-sectors, variables, shocks and alternative scenarios. It allows monitoring stock-flow norms, which can possibly help detect early signs of economic & financial fragility and crises.

Useful benchmark for PhD students, early-career researchers, non-neoclassical macro-modellers, and the practitioners who want to expand their own set of analytical tools.

Thank You

m.passarella@leeds.ac.uk

Download presentation's material from *marxianomics*: www.marcopassarella.it/en/ AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

RECLASSIFICATION

MODEL MODEL

RUNNING THE SIMULATIONS

Final remarks

PPENDIX A

Appendix B

REFERENCES

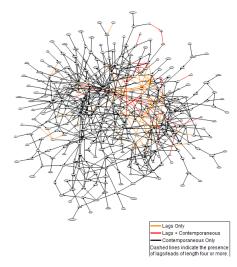
APPENDIX A: DEPENDENCY GRAPH

Marco Veronese Passarella

Introductio

RECLASSIFIC

DEVELOPING THE MODEL


RUNNING THE SIMULATIONS

Final Remark

Appendix A

Appendix 1

REFERENCES

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

A ----- A

Appendix B

Danasana

REFERENCES

Housing price index is a function of households' debt to income ratio ($m_H = MORT_H/YD_H$):

$$p_H = h \cdot m_H \cdot \frac{E(YD_H)}{HOUSE_H}$$

where h = sensitivity of housing prices to household debt. Capital gains/losses on housing are:

$$CG_H = HOUSE_{H,-1} \cdot \frac{d(p_H)}{p_{H,-1}}$$

Housing investment can be now re-defined:

$$INV_H = \vartheta_0 + \vartheta_1 \cdot INV_{H,-1} + \vartheta_2 \cdot MORT_{H,-1} + \vartheta_3 \cdot p_{H,-1}$$

REFERENCES

Brainard, W.C. and Tobin, J., 1968. Pitfalls in financial model building. The American Economic Review, 58, pp.99-122.

Burgess, S., Burrows, O., Godin, A., Kinsella, S. and Millard, S., 2016. A dynamic model of financial balances for the United Kingdom. Bank of England Working Papers, No. 614.

Dafermos, Y., and Nikolaidi, M., 2017. Post-Keynesian stock-flow consistent modelling: theory and methodology. https://yannisdafermosdotcom.files.wordpress.com.

Godin, A. 2016. SFC lectures. https://github.com/antoinegodin.

Godley, W. and Lavoie, M., 2006. Monetary economics: an integrated approach to credit, money, income, production and wealth. Springer.

Graziani, A., 2003. The monetary theory of production. Cambridge University Press.

Nikiforos, M. and Zezza, G., 2017. Stock-flow Consistent Macroeconomic Models: A Survey. Levy Economics Institute Publications, Working Paper No. 891, May 2017.

Pagan, A. 2003. Report on modelling and forecasting at the Bank of England. Quarterly Bulletin, Bank of England, Spring, pp. 60-91.