FROM ABSTRACT TO CONCRETE: AN EMPIRICAL SFC MODEL FOR ITALY

Marco Veronese Passarella

University of Leeds

m.passarella@leeds.ac.uk

March 27, 2018

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

INTRODUCTION

RECLASSIFIC

DEVELOPING THE MODEL

UNNING THE

FINAL REMARK

PPENDIX A

Appendix B

OVERVIEW

AN EMPIRICAL SFC MODEL

> Marco VERONESE PASSARELLA

Introduction

RECLASSIFICATION

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

FINAL REMARKS

APPENDIX A

APPENDIX B

References

Introduction

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

Introduction

RECLASSIFICATION

DEVELOPING THE MODEL

SIMULATIONS

I IIVAL IULWIAIO

EFERENCES

AIM & MODEL TYPE

Tips to develop a medium-scale empirical SFC model. A theory-constrained but data-driven method is used. Inspired by Godley & Lavoie (2006) and Burgess et al. (2016).

AIM & MODEL TYPE

Tips to develop a medium-scale empirical SFC model. A theory-constrained but data-driven method is used. Inspired by Godley & Lavoie (2006) and Burgess et al. (2016).

Epistemological status

The model is built upon Eurostat database & accounting. No dynamic optimisation / no representative agent. Macro-accounting approach: evolution of BS and TFM entries under different scenarios.

RECLASSIFICA

DEVELOPING THE MODEL

MULATIONS

Approximate A

Appendix B

REFERENCES

4 D > 4 P > 4 E > 4 E > 9 Q Q

AIM & MODEL TYPE

Tips to develop a medium-scale empirical SFC model. A theory-constrained but data-driven method is used. Inspired by Godley & Lavoie (2006) and Burgess et al. (2016).

Epistemological status

The model is built upon Eurostat database & accounting. No dynamic optimisation / no representative agent. Macro-accounting approach: evolution of BS and TFM entries under different scenarios.

PROJECT

Data for Italy are used, but it can be extended to other countries. Aim: create network of interacting 'personal' SFC models (using R).

SIMULATIONS

PPENDIX B

REFERENCES

A 'PRACTICAL' QUESTION

Increasing popularity of SFCMs since the publication of *Monetary Economics* (Godley & Lavoie 2006). Numerical simulations and cross-breeding with AB and IO. But seldom empirical models.

SIMULATIONS

Appendix A

APPENDIA D

REFERENCES

A 'PRACTICAL' QUESTION

Increasing popularity of SFCMs since the publication of *Monetary Economics* (Godley & Lavoie 2006). Numerical simulations and cross-breeding with AB and IO. But seldom empirical models.

NO GENERAL METHOD

Absence of a well-established method to match the standard SFC framework with the SNA 2008 (and estimate coefficients).

RUNNING THE SIMULATIONS

I IIVAL IÇLMAI

APPENDIX B

REFERENCES

A 'PRACTICAL' QUESTION

Increasing popularity of SFCMs since the publication of *Monetary Economics* (Godley & Lavoie 2006). Numerical simulations and cross-breeding with AB and IO. But seldom empirical models.

NO GENERAL METHOD

Absence of a well-established method to match the standard SFC framework with the SNA 2008 (and estimate coefficients).

Bridging the gap...

...using Eurostat data: a) freely accessible online (pdfetch); b) uniform across countries; c) useful reclassification proposed by Godin (github).

An Empirical SFC Model

Marco Veronese Passarella

INTRODUCTION

RECLASSIFICATION

DEVELOPING THE

RUNNING THE IMULATIONS

1 1111111 1111111

APPENDIX A

REFERENCES

FIRST STEP: THE FULL TFM

Matching SFC TFM with Eurostat accounting.

Entries (Italy, 2015)	Eurostat	Non-Financial Corporation	Financial Corporations	Government	Households	Rest of World	Total economy	
Elitiles (listly, 2010)	Code	100					(row total)	
		S11	S12	S13	S14_S15	S2	S1	
Gross Output	P1	2095694	130440	306245	580440	0	3112819	
Intermediate Consumption	P2	-1360170	-54429	-90092	-129658		-1634349	
Taxes on Product	D21	0	0	189354	0		191605	
Subsidies on Products	D31	0	0	-24469	0	-167	-24636	
Memo: GDP		735524	76011	381038	450782	2084	1645439	
Consumption	P3	0	0	-311639	-1001014		-1312653	
Exports	P6	0	0	0	0	-493934	-493934	
Imports	P7	0	0	0	0	446042	446042	
Investment	P5 (G)	-149558	-4429	-36959	-93949		-284895	
Total Production		585966	71582	32440	-644181	-45808	0	
Wages	D1	-411085	-32356	-161998	609723	-4284	0	
Taxes on Production and Imports	D2***	-26528	-5735	240236	-18620	-189354	0	
Subsidies on Production	D3	4347	4	-28481	3929	20201	0	
Dividends	D42	-109941	-1633	4271	114625	-7322	0	
Interests payments	D41	-5209	18574	-65237	30759	21113	0	
Other property income	D4G*	-11995	-17221	3924	23481	1812	0	
Taxes on Income and Wealth	D5	-27869	-6022	241582	-206485	-1206	0	
Social Benefits (net of social contributions)	D6**	1273	2461	-113732	112607	-2609	0	
Other Current Transfers	D7	-5061	-1075	-6476	-6232	18844	0	
Adjustments in Pension Funds	D8	-1272	-2461	0	3733	0	0	
Capital Transfers	D9	18031	8294	-25421	2889	-3792	0	
Total Transfers		-575309	-37170	88668	670409	-146597	0	
Sum Production and Transfers		10657	34412	121108	26228	-192405	0	
Acquisition less consumption of NPNFP	NP	-1535	-18	-420	789	1184	0	
Tax - subsidies on product	-D21+D31	0	0	-164885	0	164885	0	
Computed Net Lending Position		9123	34394	-44197	27017	-26336	0	
Net Lending Position	B9	9123	34394	-44197	27017	-26336	0	
Total by sector (column total)		0	0	0	0		0	

Note: Italy, 2015, c.p., million euro.

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

Introduction

RECLASSIFICATION

DEVELOPING THE MODEL

UNNING THE IMULATIONS

APPENDIX A

APPENDIX B

REFERENCES

SECOND STEP: 'WHO PAYS WHOM'

Address issues with Figure 1: a) Lines 6 to 9 do no sum up to zero; b) too many entries. Assume firms produce it all!

Entries (Italy, 2015)	Eurostat Code	Non-Financial Corporation		Financial Corporations	Government		Rest of World	Total economy (row total)
	S11	(capital)	S12	S13	S14_S15	S2	S1	
Gross Output	P1	2095694		130440	306245	580440	0	3112819
Intermediate Consumption	P2	-1360170		-54429	-90092	-129658	0	-1634349
Taxes on Product	D21	0		0	189354	0	2251	19160
Subsidies on Products	D31	0		0	-24469	0	-167	-24636
Memo: GDP per sector		735524		76011	381038	450782	2084	1645440
Memo; total GDP		1645440						
GDP Redistribution		-909915		76011	381038	450782	2084	(
Consumption	P3	1312653		0	-311639	-1001014	0	
Exports	P6	493934		0	0	0	-493934	
Imports	P7	-446042		0	0	0	446042	(
Investment	P5 (G)	284895	-149558	-4429	-36959	-93949	0	(
Wages	D1	-411085		-32356	-161998	609723	-4284	(
Taxes on Production and Imports	D2	-26528		-5735	240236	-18620	-189354	(
Subsidies on Production	D3	4347		4	-28481	3929	20201	(
Dividends	D42	-109941		-1633	4271	114625	-7322	(
Interests payments	D41	-5209		18574	-65237	30759	21113	(
Other property income	D4G	-11995		-17221	3924	23481	1812	(
Taxes on Income and Wealth	D5	-27869		-6022	241582	-206485	-1206	(
Social Benefits (net of social contributions)	D6	1273		2461	-113732	112607	-2609	(
Other Current Transfers	D7	-5061		-1075	-6476	-6232	18844	(
Adjustments in Pension Funds	D8	-1272		-2461	0	3733	0	(
Capital Transfers	D9	18031		8294	-25421	2889	-3792	(
Acquisition less consumption of NPNFP	NP	-1535		-18	-420	789	1184	
Tax - subsidies on product	-D21+D31	0		0	-164885	0	164885	(
Computed Net Lending Position		9123		34394	-44197	27017	-26336	(
Net Lending Position	B9	9123		34394	-44197	27017	-26336	(
Total by sector (column total)		0		0	0	0	0	-

THIRD STEP: MERGING ENTRIES

Merge taxes, transfers and other 'secondary' entries to get the accounting structure of the model.

Entries (Italy, 2015)	Eurostat Code	Non-Financial Corporation		Financial Corporations	Government		Rest of World	Total economy (row total)
		S11	(capital)	S12	S13	S14_S15	S2	S1
GDP Redistribution		-909915			381038	450782	2084	0
Consumption	P3	1312653		0	-311639	-1001014	0	0
Exports	P6	493934		0	0	0	-493934	0
Imports	P7	-446042		0	0	0	446042	0
Investment	P5 (G)	284895	-149558	-4429	-36959	-93949	0	0
Wages	D1	-411085		-32356	-161998	609723	-4284	0
Total Taxes	02+05-021	-54397		-11757	292464	-225105	-1206	0
Dividends	D42	-109941		-1633	4271	114625	-7322	0
Interests payments	D41	-5209		18574	-65237	30759	21113	0
Other property income	D4G	-11995		-17221	3924	23481	1812	0
Transfers (subsidies, benefits, etc.)	D3+D6+D7-D31	559		1390	-124220	110304	11967	0
(Change in) funds	D8+D9+NP	15224		5815	-25841	7411	-2608	0
Computed Net Lending Position	9123		34394	-44197	27017	-26336	0	
Net Lending Position B9		9123		34394	-44197	27017	-26336	0
Total by sector (row total)	0		0	0	0	0	0	

Note: Italy, 2015, c.p., million euro.

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

Introductio

RECLASSIFICATION

DEVELOPING THE MODEL

UNNING THE MULATIONS

DDENDIV B

FOURTH STEP: THE BALANCE SHEET

Narrowed down creating 'other financial assets' composite entry (insurance tech. reserves, derivatives and other).

	Eurostat	Non-Financial Corporations		Financial Corporations			Government			Households			
	code	Assets	Liabilities	Net	Assets	Liabilities	Net	Assets	Liabilities	Net	Assets	Liabilities	Net
Non-financial assets (dwellings)	N1N+N2N	180,249.6	0.0	180,249.6	4,781.2	0.0	4,781.2	54,401.6	0.0	54,401.6	2,518,103.0	0.0	2,518,103.0
Currency and deposits	F2	308,930.0	32,763.0	276,167.0	326,009.0	2,027,611.0	-1,701,602.0	75,877.0	239,722.0	-163,845.0	1,273,045.0	0.0	1,273,045.0
Securities other than shares	F3	57,048.0	145,902.0	-88,854.0	1,675,684.0	540,827.0	1,134,857.0	27,908.0	2,097,250.0	-2,069,342.0	413,008.0	0.0	413,008.0
Loans	F4	18,947.0	1,067,001.0	-1,048,054.0	1,823,350.0	109,846.0	1,713,504.0	94,284.0	177,240.0	-82,956.0	13,707.0	691,961.0	-678,254.0
Shares and other equity	F5	525,651.0	1,666,671.0	-1,141,020.0	632,959.0	475,698.0	157,261.0	128,934.0	0.0	128,934.0	1,447,540.0	0.0	1,447,540.0
Other financial assets													
- Insurance technical reserves	F6	16,896.0	101,556.0	-84,660.0	6,358.0	758,730.0	-752,372.0	1,278.0	3,803.0	-2,525.0	862,636.0	0.0	862,636.0
- Derivatives and empl. stock options	F7	15,425.0	14,307.0	1,118.0	125,954.0	138,737.0	-12,783.0	0.0	31,899.0	-31,899.0	738.0	68.0	670.0
- Other accounts receivable/payable	F8	147,171.0	91,326.0	55,845.0	26,448.0	5,664.0	20,784.0	115,005.0	74,245.0	40,760.0	13,286.0	93,518.0	-80,232.0
Net Worth	BF90			-1,849,208.4			564,430.2			-2,126,471.4			5,756,516.0

Note: Italy, 2015, c.p., million euro.

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

INTRODUCTION

RECLASSIFICATION

DEVELOPING THE MODEL

UNNING THE MULATIONS

PPENDIX A

PEREDENGE

FEATURES AND ASSUMPTIONS

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

Introduction

RECLASSIFICATION

DEVELOPING THE MODEL

UNNING THE
IMULATIONS

FINAL REMAI

PPENDIX B

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

Introduction

RECLASSIFICA

DEVELOPING THE MODEL

SIMULATIONS

------ D

III ENDIA D

EFERENCES

FEATURES AND ASSUMPTIONS

Discrete-time macro (econometric) model. 5 sectors: households, NFCs, government, banks, foreign sector

SIMULATIONS

DDENDIV D

EFERENCES

- Discrete-time macro (econometric) model. 5 sectors: households, NFCs, government, banks, foreign sector
- Based on Eurostat, while assuring stock-flow consistency (ESSFC)

Discrete-time macro (econometric) model. 5 sectors: households, NFCs, government, banks, foreign sector

Based on Eurostat, while assuring stock-flow consistency (ESSFC)

Demand-led both in the short- and long-run

KUNNING THE SIMULATIONS

.

AFFENDIA A

Appendix B

REFERENCES

- Discrete-time macro (econometric) model. 5 sectors: households, NFCs, government, banks, foreign sector
- Based on Eurostat, while assuring stock-flow consistency (ESSFC)
- ▶ Demand-led both in the short- and long-run
- ► Constant prices (2010) and national currency (Euro)

RUNNING THE SIMULATIONS

III ENDIA II

APPENDIX B

REFERENCES

- Discrete-time macro (econometric) model. 5 sectors: households, NFCs, government, banks, foreign sector
- Based on Eurostat, while assuring stock-flow consistency (ESSFC)
- ▶ Demand-led both in the short- and long-run
- ► Constant prices (2010) and national currency (Euro)
- Output produced by firms only on behalf of other sectors

SIMULATIONS

.

ADDENDIV B

REFERENCES

- Discrete-time macro (econometric) model. 5 sectors: households, NFCs, government, banks, foreign sector
- Based on Eurostat, while assuring stock-flow consistency (ESSFC)
- ▶ Demand-led both in the short- and long-run
- ► Constant prices (2010) and national currency (Euro)
- Output produced by firms only on behalf of other sectors
- ▶ Distribution is determined by institutional & political factors (β_j)

- Discrete-time macro (econometric) model. 5 sectors: households, NFCs, government, banks, foreign sector
- Based on Eurostat, while assuring stock-flow consistency (ESSFC)
- Demand-led both in the short- and long-run
- Constant prices (2010) and national currency (Euro)
- Output produced by firms only on behalf of other sectors
- Distribution is determined by institutional & political factors (β_i)
- Each sector is marked by either a portfolio function or a simple financial investment rule

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

Introduction

RECLASSIFICATION

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

INAL REMAR

PPENDIX A

Appendix B

▶ Net stocks of financial assets and liabilities

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

NTRODUCTION

RECLASSIFICATION

DEVELOPING THE MODEL

SIMULATIONS

----- D

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

NTRODUCTION

Reclassification

DEVELOPING THE MODEL

KUNNING THE SIMULATIONS

III DINDIA II

APPENDIX D

- ▶ Net stocks of financial assets and liabilities
- Simplifying hypotheses about sectoral portfolio compositions

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

INTRODUCTION

RECLASSIFICAT

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

I IIVALI IULWIAI

APPENDIA A

Appendix B

- ▶ Net stocks of financial assets and liabilities
- Simplifying hypotheses about sectoral portfolio compositions
- Banks and NBFIs: integrated and consolidated sector

ESSFC position along Pagan's 'best practice' frontier of models

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

INTRODUCTION

RECLASSIFICATION

DEVELOPING THE MODEL

RUNNING THE

FINAL REMARI

DEPUNDIX A

HOUSEHOLDS: SELECTED IDENTITIES

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

INTRODUCTION

RECLASSIFICATIO

DEVELOPING THE MODEL

SIMULATIONS

DENDIV B

EFERENCES

HOUSEHOLDS DISPOSABLE INCOME

 $YD = GDP_H + WB - \tau_H + INT_H + T_H + ANN_H$

where: $GDP_H = \beta_H \cdot GDP$.

HOUSEHOLDS: SELECTED IDENTITIES

$$YD = GDP_H + WB - \tau_H + INT_H + T_H + ANN_H$$

where: $GDP_H = \beta_H \cdot GDP$.

HOUSEHOLD NET WEALTH

$$NW_H = HOUSE_H + D_H + V_H + B_H + OFIN_H - L_H$$

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

INTRODUCTION

RECLASSIFICA

DEVELOPING THE MODEL

RUNNING THE IMULATIONS

FINAL REMARK

PPENDIX A

Appendix B

HOUSEHOLDS: SELECTED IDENTITIES

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

Introduction

Reclassificat

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

. _

O DEDENDEN CODO

EFERENCES

HOUSEHOLDS DISPOSABLE INCOME

$$YD = GDP_H + WB - \tau_H + INT_H + T_H + ANN_H$$
 where: $GDP_H = \beta_H \cdot GDP$.

HOUSEHOLD NET WEALTH

$$NW_H = HOUSE_H + D_H + V_H + B_H + OFIN_H - L_H$$

NET LENDING BY HOUSEHOLDS

$$NL_H = YD + FUNDS - CONS_H - INV_H$$

HOUSEHOLDS: SELECTED BEHAVIOURAL

HAIG-SIMONS CONSUMPTION FUNCTION

$$C_H = c_1 \cdot E(YD) + c_2 \cdot NW_{H,-1}$$

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

INTRODUCTIO

Reclassificat

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

FINAL REMAR

PPENDIA A

PPENDIX B

HOUSEHOLDS: SELECTED BEHAVIOURAL

HAIG-SIMONS CONSUMPTION FUNCTION

$$C_H = c_1 \cdot E(YD) + c_2 \cdot NW_{H,-1}$$

HOUSEHOLD INVESTMENT

$$INV_H = \vartheta_0 + \vartheta_1 \cdot INV_{H,-1} + \vartheta_2 \cdot HOUSE_{H,-1} + \vartheta_3 \cdot p_{H,-1}$$

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

NTRODUCTION

Reclassifica

DEVELOPING THE MODEL

UNNING THE MULATIONS

. _

HAIG-SIMONS CONSUMPTION FUNCTION

$$C_H = c_1 \cdot \textit{E(YD)} + c_2 \cdot \textit{NW}_{H,-1}$$

HOUSEHOLD INVESTMENT

$$INV_{H} = \vartheta_{0} + \vartheta_{1} \cdot INV_{H,-1} + \vartheta_{2} \cdot HOUSE_{H,-1} + \vartheta_{3} \cdot p_{H,-1}$$

DEMAND FOR MORTGAGES & OTHER LOANS

$$\textit{L}_{\textit{H}} = \textit{L}_{\textit{H},-1} + \phi_1 \cdot \textit{YD}_{-1} + \phi_2 \cdot \textit{HOUSE}_{\textit{H},-1} + \phi_3 \cdot \textit{INV}_{\textit{H},-1}$$

HOUSEHOLDS: PORTFOLIO CHOICE

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

NTRODUCTION

RECLASSIFICA

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

FINAL REMAI

PPENDIX B

REFERENCES

EQUITY & SHARES

$$\frac{V_{H}}{E(NFW_{H})} = \lambda_{1,0}^{H} + \lambda_{1,1}^{H} \cdot E(r_{V}) + \lambda_{1,2}^{H} \cdot \frac{E(YD_{H})}{E(NFW_{H})} + \lambda_{1,3}^{H} \cdot E(r_{BA})$$

where $\lambda_{1,j}$ are empirically estimated. The same goes for D_H and B_H . Note: $r_D=0$.

RUNNING THE SIMULATIONS

Appendix R

REPEDENCES

References

EQUITY & SHARES

$$\frac{V_{H}}{E(NFW_{H})} = \lambda_{1,0}^{H} + \lambda_{1,1}^{H} \cdot E(r_{V}) + \lambda_{1,2}^{H} \cdot \frac{E(YD_{H})}{E(NFW_{H})} + \lambda_{1,3}^{H} \cdot E(r_{BA})$$

where $\lambda_{1,j}$ are empirically estimated. The same goes for D_H and B_H . Note: $r_D=0$.

OTHER FINANCIAL ASSETS

$$OFIN_H = \sigma_{OFIN}^H \cdot NW_H$$

When the correction mechanism is used, $OFIN_H$ is redefined as the residual share (σ_{OFIN}^H) of net wealth.

NFCs: Selected identities

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

Introduction

RECLASSIFICATION

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

I IIVAL ILLMAN

----- D

EFERENCES

Gross Domestic Product

 $GDP = Y - CONS_{INT} + \tau_P^{NET}$

NFCs: SELECTED IDENTITIES

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

NTRODUCTION

RECLASSIFICATION

DEVELOPING THE MODEL

IMULATIONS

A DDENIDIV A

Appendix D

REFERENCES

Gross Domestic Product

 $GDP = Y - CONS_{INT} + \tau_P^{NET}$

AGGREGATE DEMAND

 $Y_{AD} = CONS_H + CONS_G + INV + CONS_{INT} + EXP - IMP - \tau_T^{NET}$

NFCs: Selected identities

An Empirical SFC Model

> Marco Veronese Passarella

NTRODUCTION

RECLASSIFICATION

DEVELOPING THE MODEL

IMULATIONS

APPENDIX A

Appendix B

EFERENCES

Gross Domestic Product

$$GDP = Y - CONS_{INT} + \tau_P^{NET}$$

AGGREGATE DEMAND

$$Y_{AD} = CONS_H + CONS_G + INV + CONS_{INT} + EXP - IMP - \tau_T^{NET}$$

NET LENDING BY NFCS

$$NL_F = \Pi_{FU} - INV_F$$

NFCs: selected behavioural

 $INV = K_{-1} \cdot (g_K + \delta_K)$

Total investment

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

Introduction

RECLASSIFICATION

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

FINAL REMAR

_

APPENDIX B

EFERENCES

FINAL REMARKS

Appendix A

APPENDIX D

REFERENCES

TOTAL INVESTMENT

$$INV = K_{-1} \cdot (g_K + \delta_K)$$

GROWTH RATE OF CAPITAL

$$g_K = \gamma_Y + \gamma_U \cdot E\left(\frac{Y}{K}\right) + \gamma_\Pi \cdot E\left(\frac{\Pi_F}{K}\right) - \gamma_Z \cdot E(r_Z) - \gamma_R \cdot E(r_{L,F})$$

MODEL.

TOTAL INVESTMENT

$$INV = K_{-1} \cdot (g_K + \delta_K)$$

GROWTH RATE OF CAPITAL

$$g_{K} = \gamma_{Y} + \gamma_{U} \cdot E\left(\frac{Y}{K}\right) + \gamma_{\Pi} \cdot E\left(\frac{\Pi_{F}}{K}\right) - \gamma_{Z} \cdot E(r_{Z}) - \gamma_{R} \cdot E(r_{L,F})$$

Import

$$\textit{IMP} = \mu_0 + \textit{IMP}_{-1} \cdot expigg(\mu_1 + \mu_2 \cdot ln\Big(rac{Y}{Y_{-1}}\Big) + \mu_3 \cdot \big(\textit{NER} - \textit{NER}_{-1}\big)igg)$$

NFCs: SUPPLY SIDE?

An Empirical SFC Model

Marco Veronese Passarella

Introductio

RECLASSIFICATION

DEVELOPING THE MODEL

RUNNING THE IMULATIONS

FINAL REMARI

PPENDIX A

PPENDIX B

EFERENCES

LEONTIEF FUNCTION

$Y_n = min(Y_n^L, Y_n^K)$

NFCs: SUPPLY SIDE?

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

Introduction

RECLASSIFICATION

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

PINAL REWAR

Appendix B

REFERENCES

LEONTIEF FUNCTION

$$Y_n = min(Y_n^L, Y_n^K)$$

where:

$$\log(Y_n^L) = \nu_0^L + \nu_1^L \cdot \log(N) + \nu_2^L \cdot t$$

I IIVAL ILLMIAIC

Appendix B

REFERENCES

LEONTIEF FUNCTION

$$Y_n = min(Y_n^L, Y_n^K)$$

where:

$$\log(Y_n^L) = \nu_0^L + \nu_1^L \cdot \log(N) + \nu_2^L \cdot t$$

and:

$$\log(Y_n^K) = \nu_0^K + \nu_1^K \cdot \log(K) + \nu_2^K \cdot t$$

$$Y_n = min(Y_n^L, Y_n^K)$$

where:

$$\log(Y_n^L) = \nu_0^L + \nu_1^L \cdot \log(N) + \nu_2^L \cdot t$$

and:

$$\log(Y_n^K) = \nu_0^K + \nu_1^K \cdot \log(K) + \nu_2^K \cdot t$$

Note: 'normal times'; used to determine p_Y and p_K , not Y.

NET LENDING BY OTHER SECTORS

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

INTRODUCTION

Reclassification

DEVELOPING THE MODEL

SIMULATIONS

.

APPENDIX D

EFERENCES

GOVERNMENT

 $NL_G = GOV_{REV} - GOV_{SP} - INT_G$

NET LENDING BY OTHER SECTORS

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

Introduction

RECLASSIFICATION

DEVELOPING THE MODEL

UNNING THE
IMULATIONS

APPENDIX B

REFERENCES

GOVERNMENT

 $NL_G = GOV_{REV} - GOV_{SP} - INT_G$

BANKS & NBFIS

 $NL_B = \Pi_B - DIV_B - INV_B$

NET LENDING BY OTHER SECTORS

AN EMPIRICAL SEC MODEL

> Marco VERONESE PASSARELLA

DEVELOPING THE MODEL.

GOVERNMENT

 $NL_G = GOV_{REV} - GOV_{SP} - INT_G$

BANKS & NBFIS

 $NL_B = \Pi_B - DIV_B - INV_B$

Rest of the world

 $NL_{RoW} = -(NL_H + NL_F + NL_G + NL_B)$

Cross-sector holdings and payments

WHO PAYS WHOM

Sectoral portfolios are different in terms of asset types' composition (shares, securities, deposits). However, each sector i (e.g. government) holds the same proportion of x-type assets (e.g. bonds) issued by j to total x. Coherent with the hypothesis that x-type assets carry all the same average return rate.

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

INTRODUCTIO

Reclassific

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

FINAL REMAR

PPENDIX A

PPENDIX B

EFERENCES

RECLASSIFIC

DEVELOPING THE MODEL

RUNNING THI SIMULATIONS

A parameter A

Appendix B

References

WHO PAYS WHOM

Sectoral portfolios are different in terms of asset types' composition (shares, securities, deposits). However, each sector i (e.g. government) holds the same proportion of x-type assets (e.g. bonds) issued by j to total x. Coherent with the hypothesis that x-type assets carry all the same average return rate.

Payments and holdings

Seldom dividends received by *i* mirror its holdings. Two steps: *a*) total dividends received by *i* are corrected to fit empirical evidence ($DIV_i = e_i \cdot DIV_{TOT} \cdot V_i / V_{TOT}$, where e_i is the correction coefficient); *b*) each 'issuing' sector *j* pays the same proportion ($perc_j = DIV_j / DIV_{TOT}$) of total dividends to every other sector (so: $DIV_{j,i} = perc_j \cdot DIV_i$). The same goes for interest payments.

DATA ESTIMATION AND CALIBRATION

An Empirical SFC Model

MARCO VERONESE PASSARELLA

Introduction

Reclassific

DEVELOPING THE MODEL

SIMULATIONS

PPENDIX B

EFERENCES

METHODS

Initial stocks & lagged variables are set at their historical value at 1996. Unknown coefficients can be: a) estimated; b) calibrated (data observation or literature); c) fine-tuned to create baseline. Theoretical SFCMs are set up by using (b) and (c). ESSFC coefficients are defined by (a).

DATA ESTIMATION AND CALIBRATION

An Empirical SEC MODEL

MARCO VERONESE Passarella

DEVELOPING THE MODEL.

METHODS

Initial stocks & lagged variables are set at their historical value at 1996. Unknown coefficients can be: a) estimated; b) calibrated (data observation or literature); c) fine-tuned to create baseline. Theoretical SFCMs are set up by using (b) and (c). ESSFC coefficients are defined by (a).

DATASET

1996-2016, annual, by sector, constant prices (2010). Pros: uniformity, simplify coding. Cons: low frequency, short.

DEVELOPING THE MODEL.

ESTIMATION

Key equations: coefficients estimated one at time by simple OLS. *Pros*: simplify coding (intermediate step). *Cons*: endogeneity, spurious correlation. Note: MOVAV for 'supplementary' equation parameters.

METHODS

Initial stocks & lagged variables are set at their historical value at 1996. Unknown coefficients can be: a) estimated; b) calibrated (data observation or literature); c) fine-tuned to create baseline. Theoretical SFCMs are set up by using (b) and (c). ESSFC coefficients are defined by (a).

DATASET

1996-2016, annual, by sector, constant prices (2010). Pros: uniformity, simplify coding. Cons: low frequency, short.

SOFTWARE TECHNICALITIES

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

NTRODUCTION

RECLASSIFICA

DEVELOPING THE MODEL

SIMULATIONS

FINAL REMARK

Appendix A

REFERENCES

PROGRAMS' STRUCTURE

RUNNING THE SIMULATIONS

A DDENIDIY A

Appendix B

REFERENCES

FITTING PAST DATA AND FORECASTING

Residuals assumed to reduce steadily up until t_0 and are unwound afterwards. For $t \leq t_0$, the estimate value of x, corrected to improve the fit, is:

$$x_t^* = e^{-\mu \cdot \frac{t}{t_0 - t}} \cdot (x_t^f - \overline{x}) + \overline{x} \tag{1}$$

where x_t^f is the forecast value of x at t and \overline{x} is the actual (average) value of x.

FITTING PAST DATA AND FORECASTING

Residuals assumed to reduce steadily up until t_0 and are unwound afterwards. For $t \leq t_0$, the estimate value of x, corrected to improve the fit, is:

$$x_t^* = e^{-\mu \cdot \frac{t}{t_0 - t}} \cdot (x_t^f - \overline{x}) + \overline{x} \tag{1}$$

where x_t^f is the forecast value of x at t and \overline{x} is the actual (average) value of x.

So,
$$x_t^* \to x_t^f$$
, for $t \to 0$; while $x_t^* \to \overline{x}$ (or x_t) for $t \to t_0$.

FITTING PAST DATA AND FORECASTING (CONT'D)

For $t > t_0$, the estimate value of x, corrected to smooth the transition, is:

$$x_t^* = e^{-\mu \cdot (t-t_0)} \cdot (\overline{x} - x_t^f) + x_t^f \tag{2}$$

So, $x_t^* \to \overline{x}$ for $t \to t_0$; while $x_t^* \to x_t^f$, for $t \to +\infty$.

FITTING PAST DATA AND FORECASTING (CONT'D)

For $t > t_0$, the estimate value of x, corrected to smooth the transition, is:

$$x_t^* = e^{-\mu \cdot (t - t_0)} \cdot (\bar{x} - x_t^f) + x_t^f \tag{2}$$

So, $x_t^* \to \overline{x}$ for $t \to t_0$; while $x_t^* \to x_t^f$, for $t \to +\infty$.

Future (predicted) residuals are allowed to increase gradually. Model's forecast value departs gradually from the last observed (average) value.

RUNNING THE SIMULATIONS

FITTING PAST DATA AND FORECASTING (CONT'D)

This simple mechanism creates a moving ceiling for residuals, which: a) improve artificially estimates of stochastic variables; b) reset identities.

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

INTRODUCTION

Reclassifica

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

'INAL REMARK

_

APPENDIX B

EFERENCES

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

FINAL REMARKS

APPENDIX A

REFERENCES

FITTING PAST DATA AND FORECASTING (CONT'D)

This simple mechanism creates a moving ceiling for residuals, which: a) improve artificially estimates of stochastic variables; b) reset identities.

Note: option (b) requires identifying a 'residual' or 'buffer' variable to absorb the estimation difference (i.e. $x_t^* - x_t^f$). 'Other financial assets' is used by ESSFC.

RUNNING THE SIMULATIONS

FITTING PAST DATA AND FORECASTING (CONT'D)

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

Introduction

Reclassific.

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

Final remarks

APPENDIX A
APPENDIX B

EFERENCES

RECLASSIFIC

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

A ----- A

APPENDIX B

EFERENCES

FITTING PAST DATA AND FORECASTING (CONT'D)

Possible capital gains/losses (revaluation effect) are assumed away on government bonds. As for other financial and real assets, the revaluation effect is automatically accounted for, as stocks at time t are defined as stocks at time t-1 plus changes in stocks' value from t-1 to t.

Introduction

RECLASSIFICA

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

A DDENIDIV A

Appendix B

REFERENCES

RUNNING THE SIMULATIONS

DATA FIT AND FORECAST

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

INTRODUCTION

RECLASSIFICATI

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

DDENDIV R

EFERENCES

DEVELOPING THE

RUNNING THE SIMULATIONS

.

PPENDIX B

EFERENCES

Data fit and forecast

 Correction mechanism allows perfect match with last observation

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

.

PPENDIX B

EFERENCES

4 D > 4 A > 4 E > 4 E > E 9 Q C

Data fit and forecast

- Correction mechanism allows perfect match with last observation
- Each crisis affects ESSFC predicting power (pikes in residuals)

RUNNING THE SIMULATIONS

FINAL REMARI

DDENDIV B

_

REFERENCES

- Correction mechanism allows perfect match with last observation
- Each crisis affects ESSFC predicting power (pikes in residuals)
- ► Neither a mere static simulation nor a narrowly-defined dynamic one

RUNNING THE SIMULATIONS

FINAL REMARK

.11 ENDIA 11

Appendix B

REFERENCES

- Correction mechanism allows perfect match with last observation
- Each crisis affects ESSFC predicting power (pikes in residuals)
- ► Neither a mere static simulation nor a narrowly-defined dynamic one
- Middle ground: dynamic simulation, but ceiling for residuals and moving averages

RUNNING THE SIMULATIONS

Final remarks

Appendix I

REFERENCES

- Correction mechanism allows perfect match with last observation
- Each crisis affects ESSFC predicting power (pikes in residuals)
- Neither a mere static simulation nor a narrowly-defined dynamic one
- Middle ground: dynamic simulation, but ceiling for residuals and moving averages
- Medium-run forecast: additional hypotheses on coefficients are required

RUNNING THE SIMULATIONS

FINAL REMARK

Appendix I

REFERENCES

- Correction mechanism allows perfect match with last observation
- Each crisis affects ESSFC predicting power (pikes in residuals)
- Neither a mere static simulation nor a narrowly-defined dynamic one
- Middle ground: dynamic simulation, but ceiling for residuals and moving averages
- Medium-run forecast: additional hypotheses on coefficients are required
- Useful to impose and compare different scenarios

RUNNING THE SIMULATIONS

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

Introductio

RECLASSIFICATION

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

Appendix B

EFERENCES

ALTERNATIVE SCENARIOS

Three alternative scenarios about government spending:

RUNNING THE SIMULATIONS

A A

Appendix B

REFERENCES

ALTERNATIVE SCENARIOS

Three alternative scenarios about government spending:

► Baseline scenario: historical trend (black line)

RUNNING THE SIMULATIONS

A DDENDIN A

Appendix B

REFERENCES

ALTERNATIVE SCENARIOS

Three alternative scenarios about government spending:

- ► Baseline scenario: historical trend (black line)
- ► Austerity: permanent cut in government consumption (-1% of GDP, blue line)

ALTERNATIVE SCENARIOS

RUNNING THE SIMULATIONS

PPENDIX B

REFERENCES

trand (black line)

Three alternative scenarios about government spending:

- ► Baseline scenario: historical trend (black line)
- ► Austerity: permanent cut in government consumption (-1% of GDP, blue line)
- ▶ Profligacy: increase in government consumption (+1% of GDP, red line)

Introduction

RECLASSIFICA

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

.

Appendix B

REFERENCES

ESSFC reaction following shocks to government spending

AN EMPIRICAL SEC MODEL

Marco Veronese Passarella

RUNNING THE

B. Real GDP growth: alternative scenarios

ESSFC reaction following shocks to government spending (cont'd)

.015

.010

.000

DEVELOPMENTS AND LIMITATIONS

AN EMPIRICAL SFC MODEL

> Marco Veronese Passarella

INTRODUCTION

RECLASSIFICATI

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

SINAL REMARKS

PPENDIX A

PPENDIX B

EFERENCES

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

Introduction

RECLASSIFICA

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

nneumer D

EFERENCES

DEVELOPMENTS AND LIMITATIONS

► Standard deviation is quite high

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

Introduction

RECLASSIFICA

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

.

APPENDIX B

EFERENCES

- Standard deviation is quite high
- Increase frequency

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

A A

Appendix B

REFERENCES

- Standard deviation is quite high
- ► Increase frequency
- Use cointegration, instrumental variables, other econometrics

RUNNING THE

- Standard deviation is quite high
- Increase frequency
- Use cointegration, instrumental variables, other econometrics
- Use net stocks and transactions

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

APPENDIX B

REFERENCES

4 D > 4 A > 4 B >

- Standard deviation is quite high
- ► Increase frequency
- Use cointegration, instrumental variables, other econometrics
- Use net stocks and transactions
- Reduce aggregation of financial assets

RECLASSIFICA

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

1 1111111 111111111

III ENDIA II

APPENDIX B

REFERENCES

- Standard deviation is quite high
- Increase frequency
- Use cointegration, instrumental variables, other econometrics
- Use net stocks and transactions
- ► Reduce aggregation of financial assets
- Microfoundations?

RECLASSIFICA

DEVELOPING THE MODEL

RUNNING THE IMULATIONS

FINAL REMARKS

PENDIA A

PPENDIX B

EFERENCES

Despite limitations above, ESSFC can be extended to a variety of sub-sectors, variables, shocks and alternative scenarios. It allows monitoring stock-flow norms, which can possibly help detect early signs of economic & financial fragility and crises.

Final remarks

III ENDIA II

.____

Despite limitations above, ESSFC can be extended to a variety of sub-sectors, variables, shocks and alternative scenarios. It allows monitoring stock-flow norms, which can possibly help detect early signs of economic & financial fragility and crises.

▶ Useful benchmark for PhD students, early-career researchers, non-neoclassical macro-modellers, and the practitioners who want to expand their own set of analytical tools.

APPENDIX A: DEPENDENCY & STOCHASTICITY

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

Introductio

Reclassifica

DEVELOPING THE MODEL

RUNNING THE SIMULATIONS

FINAL REMARK

APPENDIX A

Appendix B

REFERENCES

APPENDIX A (CONT'D)

Marco Veronese Passarella

RECLASSIFICATION

NODEL

Tarir marriage

APPENDIX A

DDENDIY R

EFERENCES

APPENDIX B: HOUSING MARKET

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

NTRODUCTION

RECLASSIFICA

MODEL THE

SIMULATIONS

ADDENDIY A

APPENDIX B

EFERENCES

4 D > 4 A > 4 B > 4 B > 9 Q C

Supply of new housing

$$NHOUSE_s = NHOUSE_{s,-1} \cdot (1 + g_H)$$

Housing transactions (number)

$$NHOUSE_d = h_0 + h_1 \cdot d(p_H)$$

Housing price index

$$p_H = h_3 \cdot \frac{MORT_H}{YD_H} \cdot \frac{E(YD_H)}{HOUSE_H}$$

APPENDIX B (CONT'D)

AN EMPIRICAL SFC MODEL

Marco Veronese Passarella

INTRODUCTION

RECLASSIFICA

DEVELOPING THE MODEL

SIMULATIONS

APPENDIX A

Appendix B

REFERENCES

Brainard, W.C. and Tobin, J., 1968. Pitfalls in financial model building. The American Economic Review, 58, pp.99-122.

Burgess, S., Burrows, O., Godin, A., Kinsella, S. and Millard, S., 2016. A dynamic model of financial balances for the United Kingdom. Bank of England Working Papers, No. 614.

Dafermos, Y., and Nikolaidi, M., 2017. Post-Keynesian stock-flow consistent modelling: theory and methodology. https://yannisdafermosdotcom.files.wordpress.com.

Godin, A. 2016. SFC lectures. https://github.com/antoinegodin.

Godley, W. and Lavoie, M., 2006. Monetary economics: an integrated approach to credit, money, income, production and wealth. Springer.

Graziani, A., 2003. The monetary theory of production. Cambridge University Press.

Nikiforos, M. and Zezza, G., 2017. Stock-flow Consistent Macroeconomic Models: A Survey. Levy Economics Institute Publications, Working Paper No. 891, May 2017.

Pagan, A. 2003. Report on modelling and forecasting at the Bank of England. Quarterly Bulletin, Bank of England, Spring, pp. 60-91.