

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooooooo

CALIBRATION
oooo

EXPERIMENTS
ooooooo

REMARKS
oo

An Empirically Calibrated Prototype IO-SFC Model of the Italian Economy

Marco Veronese Passarella

University of L'Aquila and University of Leeds

Download this presentation from:

www.marcopassarella.it

INTRODUCTION
●○○○

ACCOUNTING
○○○

EQUATIONS
○○○○○○○○○○○○○○○○

CALIBRATION
○○○○

EXPERIMENTS
○○○○○○○○○

REMARKS
○○

INTRODUCTION

- Ecological macroeconomics has deep roots ([Rezai and Stagl, 2016](#)) , but early SFC models did *not* include the ecosystem.

INTRODUCTION

- Ecological macroeconomics has deep roots (Rezai and Stagl, 2016), but early SFC models did *not* include the ecosystem.
- This gap started to close in the late 2010s (e.g. Jackson and Victor, 2015; Dafermos et al., 2017, 2018).

INTRODUCTION

- Ecological macroeconomics has deep roots (Rezai and Stagl, 2016), but early SFC models did *not* include the ecosystem.
- This gap started to close in the late 2010s (e.g. Jackson and Victor, 2015; Dafermos et al., 2017, 2018).
- Ecological SFC models integrate:

INTRODUCTION

- Ecological macroeconomics has deep roots (Rezai and Stagl, 2016), but early SFC models did *not* include the ecosystem.
- This gap started to close in the late 2010s (e.g. Jackson and Victor, 2015; Dafermos et al., 2017, 2018).
- Ecological SFC models integrate:
 - Monetary stocks and flows (Godley and Lavoie, 2007).

INTRODUCTION

- Ecological macroeconomics has deep roots (Rezai and Stagl, 2016), but early SFC models did *not* include the ecosystem.
- This gap started to close in the late 2010s (e.g. Jackson and Victor, 2015; Dafermos et al., 2017, 2018).
- Ecological SFC models integrate:
 - Monetary stocks and flows (Godley and Lavoie, 2007).
 - Physical stocks and flows (Georgescu-Roegen, 1971).

INTRODUCTION

- Ecological macroeconomics has deep roots (Rezai and Stagl, 2016), but early SFC models did *not* include the ecosystem.
- This gap started to close in the late 2010s (e.g. Jackson and Victor, 2015; Dafermos et al., 2017, 2018).
- Ecological SFC models integrate:
 - Monetary stocks and flows (Godley and Lavoie, 2007).
 - Physical stocks and flows (Georgescu-Roegen, 1971).
- Since then, several ECO-SFC models have been developed.

INTRODUCTION
●●○○

ACCOUNTING
○○○

EQUATIONS
○○○○○○○○○○○○○○○○

CALIBRATION
○○○○

EXPERIMENTS
○○○○○○○○○

REMARKS
○○

WHY ECO-SFC MODELS MATTER

- ECO-SFC models ensure full consistency across:

INTRODUCTION
●●○○

ACCOUNTING
○○○

EQUATIONS
○○○○○○○○○○○○○○○○

CALIBRATION
○○○○

EXPERIMENTS
○○○○○○○○○

REMARKS
○○

WHY ECO-SFC MODELS MATTER

- ECO-SFC models ensure full consistency across:
 - Economic stocks and flows.

INTRODUCTION
●●○○

ACCOUNTING
○○○

EQUATIONS
○○○○○○○○○○○○○○○○

CALIBRATION
○○○○

EXPERIMENTS
○○○○○○○○○

REMARKS
○○

WHY ECO-SFC MODELS MATTER

- ECO-SFC models ensure full consistency across:
 - Economic stocks and flows.
 - Environmental stocks and flows.

INTRODUCTION
●●○○

ACCOUNTING
○○○

EQUATIONS
○○○○○○○○○○○○○○○○

CALIBRATION
○○○○

EXPERIMENTS
○○○○○○○○○

REMARKS
○○

WHY ECO-SFC MODELS MATTER

- ECO-SFC models ensure full consistency across:
 - Economic stocks and flows.
 - Environmental stocks and flows.
- They are widely used to:

INTRODUCTION
●●○○

ACCOUNTING
○○○

EQUATIONS
○○○○○○○○○○○○○○○○

CALIBRATION
○○○○

EXPERIMENTS
○○○○○○○○○

REMARKS
○○

WHY ECO-SFC MODELS MATTER

- ECO-SFC models ensure full consistency across:
 - Economic stocks and flows.
 - Environmental stocks and flows.
- They are widely used to:
 - Simulate dynamic transitions.

WHY ECO-SFC MODELS MATTER

- ECO-SFC models ensure full consistency across:
 - Economic stocks and flows.
 - Environmental stocks and flows.
- They are widely used to:
 - Simulate dynamic transitions.
 - Test policy scenarios.

WHY ECO-SFC MODELS MATTER

- ECO-SFC models ensure full consistency across:
 - Economic stocks and flows.
 - Environmental stocks and flows.
- They are widely used to:
 - Simulate dynamic transitions.
 - Test policy scenarios.
 - Analyse economy-environment feedbacks.

WHY ECO-SFC MODELS MATTER

- ECO-SFC models ensure full consistency across:
 - Economic stocks and flows.
 - Environmental stocks and flows.
- They are widely used to:
 - Simulate dynamic transitions.
 - Test policy scenarios.
 - Analyse economy-environment feedbacks.
- Main limitation: high aggregation, little inter-industry detail.

INTRODUCTION
○○●○

ACCOUNTING
○○○

EQUATIONS
○○○○○○○○○○○○○○○○

CALIBRATION
○○○○

EXPERIMENTS
○○○○○○○○○

REMARKS
○○

WHY COMBINE IO AND SFC?

- For many environmental applications, SFC alone is not enough.

INTRODUCTION
○○●○

ACCOUNTING
○○○

EQUATIONS
○○○○○○○○○○○○○○○○

CALIBRATION
○○○○

EXPERIMENTS
○○○○○○○○○

REMARKS
○○

WHY COMBINE IO AND SFC?

- For many environmental applications, SFC alone is not enough.
- Hybrid IO-SFC models offer:

INTRODUCTION
○○●○

ACCOUNTING
○○○

EQUATIONS
○○○○○○○○○○○○○○○○

CALIBRATION
○○○○

EXPERIMENTS
○○○○○○○○○

REMARKS
○○

WHY COMBINE IO AND SFC?

- For many environmental applications, SFC alone is not enough.
- Hybrid IO-SFC models offer:
 - Industrial granularity from IO analysis.

INTRODUCTION
○○●○

ACCOUNTING
○○○

EQUATIONS
○○○○○○○○○○○○○○○○

CALIBRATION
○○○○

EXPERIMENTS
○○○○○○○○○

REMARKS
○○

WHY COMBINE IO AND SFC?

- For many environmental applications, SFC alone is not enough.
- Hybrid IO-SFC models offer:
 - Industrial granularity from IO analysis.
 - Dynamic and financial coherence from SFC modelling.

WHY COMBINE IO AND SFC?

- For many environmental applications, SFC alone is not enough.
- Hybrid IO-SFC models offer:
 - Industrial granularity from IO analysis.
 - Dynamic and financial coherence from SFC modelling.
- This approach supports analysis that is:

WHY COMBINE IO AND SFC?

- For many environmental applications, SFC alone is not enough.
- Hybrid IO-SFC models offer:
 - Industrial granularity from IO analysis.
 - Dynamic and financial coherence from SFC modelling.
- This approach supports analysis that is:
 - Empirically grounded.

WHY COMBINE IO AND SFC?

- For many environmental applications, SFC alone is not enough.
- Hybrid IO-SFC models offer:
 - Industrial granularity from IO analysis.
 - Dynamic and financial coherence from SFC modelling.
- This approach supports analysis that is:
 - Empirically grounded.
 - Dynamically rich.

WHY COMBINE IO AND SFC?

- For many environmental applications, SFC alone is not enough.
- Hybrid IO-SFC models offer:
 - Industrial granularity from IO analysis.
 - Dynamic and financial coherence from SFC modelling.
- This approach supports analysis that is:
 - Empirically grounded.
 - Dynamically rich.
- Refer to: [Hardt and O'Neill \(2017\)](#); [Fevereiro et al. \(2025\)](#).

INTRODUCTION
○○○●

ACCOUNTING
○○○

EQUATIONS
○○○○○○○○○○○○○○○○

CALIBRATION
○○○○

EXPERIMENTS
○○○○○○○○○

REMARKS
○○

STATE OF THE ART AND OPEN CHALLENGES

- Despite growing interest, only a few prototype IO-SFC models exist.

STATE OF THE ART AND OPEN CHALLENGES

- Despite growing interest, only a few prototype IO-SFC models exist.
- Examples include: **Berg et al. (2015); Di Domenico et al. (2024); Jackson and Jackson (2025); Pettena and Raberto (2025); Sala (2026); Thomsen et al. (2025); Veronese Passarella (2023, 2025)**.

STATE OF THE ART AND OPEN CHALLENGES

- Despite growing interest, only a few prototype IO-SFC models exist.
- Examples include: **Berg et al. (2015); Di Domenico et al. (2024); Jackson and Jackson (2025); Pettena and Raberto (2025); Sala (2026); Thomsen et al. (2025); Veronese Passarella (2023, 2025)**.
- The reason: methodological complexity in integrating IO and SFC frameworks.

STATE OF THE ART AND OPEN CHALLENGES

- Despite growing interest, only a few prototype IO-SFC models exist.
- Examples include: **Berg et al. (2015); Di Domenico et al. (2024); Jackson and Jackson (2025); Pettena and Raberto (2025); Sala (2026); Thomsen et al. (2025); Veronese Passarella (2023, 2025)**.
- The reason: methodological complexity in integrating IO and SFC frameworks.
- Yet this integration is crucial to study economy-ecosystem interactions in a coherent way.

RECLASS. BALANCE-SHEET OF ITALY IN 2021

	Workers	Rentiers	Firms	Government	Banks	Central bank	Foreign	Total
Cash and reserves	130.44	70.24	0.00	0.00	10.82	-211.5	0.00	0.00
Deposits	1656.88	1355.62	0.00	0.00	-3012.50	0.00	0.00	0.00
Loans	-572.61	-190.87	-871.9	0.00	1635.39	0.00	0.00	0.00
Advances	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
T-bills	34.99	198.27	0.00	-2678.4	1366.29	211.5	867.34	0.00
Domestic securities	686.26	6041.83	-6728.1	0.00	0.00	0.00	0.00	0.00
Foreign securities	0.00	867.34	0.00	0.00	0.00	0.00	-867.34	0.00
Capital stock	0.00	0.00	7600.00	0.00	0.00	0.00	0.00	7600.00
Net financial wealth	-1935.96	-8342.43	0.00	2678.4	0.00	0.00	0.00	-7600.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

RECLASS. TRANSACTIONS-FLOW MATRIX IN 2021

	Workers	Rentiers	Firms		Government	Banks	Central bank	Foreign	Total
			Current	Capital					
Consumption	-407.94	-622.18	1030.12	0.00	0.00	0.00	0.00	0.00	0.00
Investment	0.00	0.00	357.21	-357.21	0.00	0.00	0.00	0.00	0.00
Government spending	0.00	0.00	394.72	0.00	-394.72	0.00	0.00	0.00	0.00
Export	0.00	0.00	582.19	0.00	0.00	0.00	0.00	-582.19	0.00
Import	0.00	0.00	-582.19	0.00	0.00	0.00	0.00	582.19	0.00
[Value added]			[1782.05]						
Wages	624.62	32.88	-657.50	0.00	0.00	0.00	0.00	0.00	0.00
Deprec. / Amort.	0.00	0.00	-357.21	357.21	0.00	0.00	0.00	0.00	0.00
Firms profit	0.00	653.34	-653.34	0.00	0.00	0.00	0.00	0.00	0.00
Banks profit	0.00	38.19	0.00	0.00	0.00	-38.19	0.00	0.00	0.00
Tax revenue	-218.74	-200.65	0.00	0.00	419.39	0.00	0.00	0.00	0.00
Interests on reserves	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Interests on deposits	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Interests on loans	-8.59	-2.86	-13.08	0.00	0.00	24.53	0.00	0.00	0.00
Interests on advances	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Interests on T-bills	0.35	1.98	0.00	0.00	-26.78	13.66	2.11	8.67	0.00
Interests on domestic sec.s	10.29	90.63	-100.92	0.00	0.00	0.00	0.00	0.00	0.00
Interests on foreign sec.s	0.00	8.67	0.00	0.00	0.00	0.00	0.00	-8.67	0.00
Seigniorage income	0.00	0.00	0.00	0.00	2.11	0.00	-2.11	0.00	0.00
Change in cash and reserves	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Change in deposits	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Change in loans	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Change in advances	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Change in T-bills	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Change in domestic sec.s	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Change in foreign sec.s	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

SELECTED TECHNICAL COEFFICIENTS

	Ind.1	Ind.2	Ind.3	Ind.4	Ind.5	Ind.6	Ind.7	Ind.8	Ind.9	Ind.10	Ind.11	Ind.12
Ind.1	0.0368797	0.0000007	0.0000007	0.0000013	0.0000007	8.00e-07	0.0000000	6.00e-07	0.0140400	0.0326833	0.0158261	0.0027586
Ind.2	0.0000057	0.0693607	0.0000138	0.0000329	0.0000157	1.66e-05	0.0000521	1.13e-05	0.0121683	0.0023488	0.0002212	0.0012697
Ind.3	0.0000000	0.0000000	0.0148670	0.0000001	0.0000000	0.00e+00	0.0000000	1.00e-07	0.2234907	0.0207926	0.0250413	0.0018627
Ind.4	0.0000000	0.0000000	0.0000000	0.0204673	0.0000000	0.00e+00	0.0000001	0.00e+00	0.0002744	0.0005054	0.0003423	0.0009458
Ind.5	0.0000000	0.0000000	0.0000000	0.0000000	0.0188265	0.00e+00	0.0000000	0.00e+00	0.0000000	0.0000000	0.0000000	0.0000000
Ind.6	0.0000012	0.0000027	0.0000029	0.0000069	0.0000033	3.50e-06	0.0000109	2.30e-06	0.0000031	0.0000045	0.0000028	0.0000003
Ind.7	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.00e+00	0.0001791	0.00e+00	0.0000000	0.0000000	0.0000000	0.0000000
Ind.8	0.0000010	0.0000024	0.0000023	0.0000048	0.0031689	2.90e-06	0.0000011	9.86e-05	0.0012323	0.0004455	0.0003160	0.0000758
Ind.9	0.0000002	0.0000005	0.0000005	0.0000021	0.0000007	5.00e-07	0.0000027	6.00e-07	0.0000523	0.0001243	0.0000024	0.0000138
Ind.10	0.0000014	0.0000040	0.0000037	0.0000080	0.0000041	4.80e-06	0.0000017	3.50e-06	0.0000048	0.0000323	0.0000049	0.0000026
Ind.11	0.0000009	0.0000025	0.0000023	0.0000052	0.0000026	2.90e-06	0.0000013	2.20e-06	0.0000030	0.0000058	0.0000036	0.0000007
Ind.12	0.0000032	0.0000080	0.0000079	0.0000169	0.0000087	9.90e-06	0.0000107	6.90e-06	0.0002764	0.0001950	0.0000705	0.0000342

Note: Please refer to my [GitHub repository](#) for a detailed description of how to integrate IO accounting with SFC accounting.

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
●oooooooooooooo

CALIBRATION
oooo

EXPERIMENTS
oooooooo

REMARKS
oo

INDUSTRIAL STRUCTURE

- Input-output relations

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
●oooooooooooooo

CALIBRATION
oooo

EXPERIMENTS
oooooooo

REMARKS
oo

INDUSTRIAL STRUCTURE

- Input-output relations

(1) Total output: $x = [I - A]^{-1} \cdot d$

INDUSTRIAL STRUCTURE

- Input-output relations

(1) Total output: $\mathbf{x} = [\mathbf{I} - \mathbf{A}]^{-1} \cdot \mathbf{d}$

(2) Domestic demand: $\mathbf{d} = \beta_w \cdot c_w + \beta_z \cdot c_z + \iota \cdot i_d + \mathbf{gov} + \chi \cdot ex$

INDUSTRIAL STRUCTURE

– Input-output relations

$$(1) \text{ Total output: } \mathbf{x} = [\mathbf{I} - \mathbf{A}]^{-1} \cdot \mathbf{d}$$

$$(2) \text{ Domestic demand: } \mathbf{d} = \beta_w \cdot c_w + \beta_z \cdot c_z + \iota \cdot i_d + \mathbf{gov} + \chi \cdot ex$$

$$(3) \text{ GDP: } Y_n = \mathbf{p}^T \cdot (\mathbf{x} \cdot [\mathbf{I} - \mathbf{A}]) - \mathbf{p}_m^T \cdot \psi \cdot im$$

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
●oooooooooooo

CALIBRATION
oooo

EXPERIMENTS
ooooooo

REMARKS
oo

PRICE SETTING

- Unit prices and mark-ups

PRICE SETTING

- Unit prices and mark-ups

(4) Price equation: $\mathbf{p}^T = (\mathbf{w} \odot \mathbf{l})^T + \mathbf{p}^T \cdot \mathbf{A} \odot \boldsymbol{\mu} \odot \mathbf{h}$

PRICE SETTING

- Unit prices and mark-ups

$$(4) \text{ Price equation: } \mathbf{p}^T = (\mathbf{w} \odot \mathbf{l})^T + \mathbf{p}^T \cdot \mathbf{A} \odot \boldsymbol{\mu} \odot \mathbf{h}$$

Note: an algorithm assigns either endogenous domestic prices or exogenous foreign prices to intermediate inputs based on the share of imported intermediate goods.

PRICE SETTING

- Unit prices and mark-ups

$$(4) \text{ Price equation: } \mathbf{p}^T = (\mathbf{w} \odot \mathbf{l})^T + \mathbf{p}^T \cdot \mathbf{A} \odot \boldsymbol{\mu} \odot \mathbf{h}$$

Note: an algorithm assigns either endogenous domestic prices or exogenous foreign prices to intermediate inputs based on the share of imported intermediate goods.

$$(5) \text{ Capital amortisation coefficients: } \mathbf{h} = (1 + \kappa \cdot \delta)$$

PRICE SETTING

- Unit prices and mark-ups

$$(4) \text{ Price equation: } \mathbf{p}^T = (\mathbf{w} \odot \mathbf{l})^T + \mathbf{p}^T \cdot \mathbf{A} \odot \boldsymbol{\mu} \odot \mathbf{h}$$

Note: an algorithm assigns either endogenous domestic prices or exogenous foreign prices to intermediate inputs based on the share of imported intermediate goods.

$$(5) \text{ Capital amortisation coefficients: } \mathbf{h} = (1 + \kappa \cdot \delta)$$

$$(6) \text{ Mark-ups: } \boldsymbol{\mu} = \boldsymbol{\mu}_0 + \boldsymbol{\mu}_1 \cdot (\mathbf{x}_{-1} - \mathbf{x}_{-1}^*)$$

PRICE SETTING

- Unit prices and mark-ups

$$(4) \text{ Price equation: } \mathbf{p}^T = (\mathbf{w} \odot \mathbf{I})^T + \mathbf{p}^T \cdot \mathbf{A} \odot \boldsymbol{\mu} \odot \mathbf{h}$$

Note: an algorithm assigns either endogenous domestic prices or exogenous foreign prices to intermediate inputs based on the share of imported intermediate goods.

$$(5) \text{ Capital amortisation coefficients: } \mathbf{h} = (1 + \kappa \cdot \delta)$$

$$(6) \text{ Mark-ups: } \boldsymbol{\mu} = \boldsymbol{\mu}_0 + \boldsymbol{\mu}_1 \cdot (\mathbf{x}_{-1} - \mathbf{x}_{-1}^*)$$

$$(7) \text{ Potential outputs: } \mathbf{x}^* = \mathbf{x}_{-1}^* + \phi \cdot (\mathbf{x}_{-1} - \mathbf{x}_{-1}^*)$$

PRICE SETTING

- Unit prices and mark-ups

$$(4) \text{ Price equation: } \mathbf{p}^T = (\mathbf{w} \odot \mathbf{l})^T + \mathbf{p}^T \cdot \mathbf{A} \odot \boldsymbol{\mu} \odot \mathbf{h}$$

Note: an algorithm assigns either endogenous domestic prices or exogenous foreign prices to intermediate inputs based on the share of imported intermediate goods.

$$(5) \text{ Capital amortisation coefficients: } \mathbf{h} = (1 + \kappa \cdot \delta)$$

$$(6) \text{ Mark-ups: } \boldsymbol{\mu} = \boldsymbol{\mu}_0 + \boldsymbol{\mu}_1 \cdot (\mathbf{x}_{-1} - \mathbf{x}_{-1}^*)$$

$$(7) \text{ Potential outputs: } \mathbf{x}^* = \mathbf{x}_{-1}^* + \phi \cdot (\mathbf{x}_{-1} - \mathbf{x}_{-1}^*)$$

$$(8) \text{ Working-class consumer price index: } p_w = \mathbf{p}^T \cdot \boldsymbol{\beta}_w$$

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oo●oooooooooooo

CALIBRATION
oooo

EXPERIMENTS
oooooooo

REMARKS
oo

HOUSEHOLDS

- Income and consumption

HOUSEHOLDS

- Income and consumption

$$(9) \text{ Workers' disposable income: } YD_w = WB \cdot (1 - \omega) + PAYM_w^A - PAYM_w^L - T_w$$

HOUSEHOLDS

– Income and consumption

$$(9) \text{ Workers' disposable income: } YD_w = WB \cdot (1 - \omega) + PAYM_w^A - PAYM_w^L - T_w$$

$$(10) \text{ Net wealth: } V_w = V_{w,-1} + YD_w - p_w \cdot c_w$$

HOUSEHOLDS

– Income and consumption

$$(9) \text{ Workers' disposable income: } YD_w = WB \cdot (1 - \omega) + PAYM_w^A - PAYM_w^L - T_w$$

$$(10) \text{ Net wealth: } V_w = V_{w,-1} + YD_w - p_w \cdot c_w$$

$$(11) \text{ Consumption function: } c_w = \alpha_0^w + \alpha_1^w \cdot \frac{YD_w + CG_w}{p_w^e} + \alpha_2^w \cdot \frac{V_{w,-1}}{p_w}$$

HOUSEHOLDS

– Income and consumption

$$(9) \text{ Workers' disposable income: } YD_w = WB \cdot (1 - \omega) + PAYM_w^A - PAYM_w^L - T_w$$

$$(10) \text{ Net wealth: } V_w = V_{w,-1} + YD_w - p_w \cdot c_w$$

$$(11) \text{ Consumption function: } c_w = \alpha_0^w + \alpha_1^w \cdot \frac{YD_w + CG_w}{p_w^e} + \alpha_2^w \cdot \frac{V_{w,-1}}{p_w}$$

$$(12) \text{ Personal loans: } L_w = L_{w,-1} \cdot (1 - \delta_w) + \theta_w \cdot YD_w$$

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
ooo●oooooooooooo

CALIBRATION
oooo

EXPERIMENTS
oooooooo

REMARKS
oo

NON-FINANCIAL FIRMS

- Capital and investment decisions

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
ooo●oooooooooooo

CALIBRATION
oooo

EXPERIMENTS
oooooooo

REMARKS
oo

NON-FINANCIAL FIRMS

- Capital and investment decisions

$$(13) \text{ Target capital stock: } k^* = \frac{p_{-1}^T \cdot (\kappa_{-1} \odot x_{-1})}{p_{id}}$$

NON-FINANCIAL FIRMS

- Capital and investment decisions

$$(13) \text{ Target capital stock: } k^* = \frac{\mathbf{p}_{-1}^T \cdot (\boldsymbol{\kappa}_{-1} \odot \mathbf{x}_{-1})}{p_{id}}$$

$$(14) \text{ Investment function: } i_d = \gamma \cdot (k^* - k_{-1}) + da$$

NON-FINANCIAL FIRMS

- Capital and investment decisions

$$(13) \text{ Target capital stock: } k^* = \frac{p_{-1}^T \cdot (\kappa_{-1} \odot x_{-1})}{p_{id}}$$

$$(14) \text{ Investment function: } i_d = \gamma \cdot (k^* - k_{-1}) + da$$

$$(15) \text{ Depreciation: } da = \delta \cdot k_{-1}$$

NON-FINANCIAL FIRMS

- Capital and investment decisions

$$(13) \text{ Target capital stock: } k^* = \frac{\mathbf{p}_{-1}^T \cdot (\boldsymbol{\kappa}_{-1} \odot \mathbf{x}_{-1})}{p_{id}}$$

$$(14) \text{ Investment function: } i_d = \gamma \cdot (k^* - k_{-1}) + da$$

$$(15) \text{ Depreciation: } da = \delta \cdot k_{-1}$$

$$(16) \text{ Capital stock evolution: } k = k_{-1} + i_d - da$$

NON-FINANCIAL FIRMS

- Capital and investment decisions

$$(13) \text{ Target capital stock: } k^* = \frac{\mathbf{p}_{-1}^T \cdot (\boldsymbol{\kappa}_{-1} \odot \mathbf{x}_{-1})}{p_{id}}$$

$$(14) \text{ Investment function: } i_d = \gamma \cdot (k^* - k_{-1}) + da$$

$$(15) \text{ Depreciation: } da = \delta \cdot k_{-1}$$

$$(16) \text{ Capital stock evolution: } k = k_{-1} + i_d - da$$

- Firms' financial accounts

NON-FINANCIAL FIRMS

- Capital and investment decisions

$$(13) \text{ Target capital stock: } k^* = \frac{\mathbf{p}_{-1}^T \cdot (\boldsymbol{\kappa}_{-1} \odot \mathbf{x}_{-1})}{p_{id}}$$

$$(14) \text{ Investment function: } i_d = \gamma \cdot (k^* - k_{-1}) + da$$

$$(15) \text{ Depreciation: } da = \delta \cdot k_{-1}$$

$$(16) \text{ Capital stock evolution: } k = k_{-1} + i_d - da$$

- Firms' financial accounts

$$(17) \text{ Total profits: } \Pi_f = Y_n - WB - AF - PAYM_f^L - PAYM_f^E$$

NON-FINANCIAL FIRMS

- Capital and investment decisions

$$(13) \text{ Target capital stock: } k^* = \frac{\mathbf{p}_{-1}^T \cdot (\kappa_{-1} \odot \mathbf{x}_{-1})}{p_{id}}$$

$$(14) \text{ Investment function: } i_d = \gamma \cdot (k^* - k_{-1}) + da$$

$$(15) \text{ Depreciation: } da = \delta \cdot k_{-1}$$

$$(16) \text{ Capital stock evolution: } k = k_{-1} + i_d - da$$

- Firms' financial accounts

$$(17) \text{ Total profits: } \Pi_f = Y_n - WB - AF - PAYM_f^L - PAYM_f^E$$

$$(18) \text{ Retained profits: } \Pi_u = \eta \cdot \Pi_f$$

NON-FINANCIAL FIRMS

- Capital and investment decisions

$$(13) \text{ Target capital stock: } k^* = \frac{\mathbf{p}_{-1}^T \cdot (\kappa_{-1} \odot \mathbf{x}_{-1})}{p_{id}}$$

$$(14) \text{ Investment function: } i_d = \gamma \cdot (k^* - k_{-1}) + da$$

$$(15) \text{ Depreciation: } da = \delta \cdot k_{-1}$$

$$(16) \text{ Capital stock evolution: } k = k_{-1} + i_d - da$$

- Firms' financial accounts

$$(17) \text{ Total profits: } \Pi_f = Y_n - WB - AF - PAYM_f^L - PAYM_f^E$$

$$(18) \text{ Retained profits: } \Pi_u = \eta \cdot \Pi_f$$

$$(19) \text{ Firms' net borrowing: } L_f = L_{f,-1} + p_{id} \cdot id - AF - \Pi_u - \Delta E_s$$

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooo●oooooooooooo

CALIBRATION
oooo

EXPERIMENTS
oooooooo

REMARKS
oo

BANKS AND FINANCE

- Loans and Reserves

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooo●oooooooooooo

CALIBRATION
oooo

EXPERIMENTS
oooooooo

REMARKS
oo

BANKS AND FINANCE

– Loans and Reserves

$$(20) \text{ Supply of loans: } L_s = L_{s,-1} + \Delta L_f + \Delta L_w + \Delta L_z$$

BANKS AND FINANCE

– Loans and Reserves

$$(20) \text{ Supply of loans: } L_s = L_{s,-1} + \Delta L_f + \Delta L_w + \Delta L_z$$

$$(21) \text{ Bank reserves: } H_b = \rho \cdot M_{s,-1}$$

BANKS AND FINANCE

- Loans and Reserves

$$(20) \text{ Supply of loans: } L_s = L_{s,-1} + \Delta L_f + \Delta L_w + \Delta L_z$$

$$(21) \text{ Bank reserves: } H_b = \rho \cdot M_{s,-1}$$

- Bank Balance Sheet

BANKS AND FINANCE

- Loans and Reserves

$$(20) \text{ Supply of loans: } L_s = L_{s,-1} + \Delta L_f + \Delta L_w + \Delta L_z$$

$$(21) \text{ Bank reserves: } H_b = \rho \cdot M_{s,-1}$$

- Bank Balance Sheet

$$(22) \text{ Government securities held by banks: } B_b = M_s - L_d - H_b$$

BANKS AND FINANCE

– Loans and Reserves

$$(20) \text{ Supply of loans: } L_s = L_{s,-1} + \Delta L_f + \Delta L_w + \Delta L_z$$

$$(21) \text{ Bank reserves: } H_b = \rho \cdot M_{s,-1}$$

– Bank Balance Sheet

$$(22) \text{ Government securities held by banks: } B_b = M_s - L_d - H_b$$

$$(23) \text{ Bank advances: } A_d = -B_b, \text{ if } B_b < 0$$

BANKS AND FINANCE

- Loans and Reserves

$$(20) \text{ Supply of loans: } L_s = L_{s,-1} + \Delta L_f + \Delta L_w + \Delta L_z$$

$$(21) \text{ Bank reserves: } H_b = \rho \cdot M_{s,-1}$$

- Bank Balance Sheet

$$(22) \text{ Government securities held by banks: } B_b = M_s - L_d - H_b$$

$$(23) \text{ Bank advances: } A_d = -B_b, \text{ if } B_b < 0$$

- Bank Profits

BANKS AND FINANCE

- Loans and Reserves

$$(20) \text{ Supply of loans: } L_s = L_{s,-1} + \Delta L_f + \Delta L_w + \Delta L_z$$

$$(21) \text{ Bank reserves: } H_b = \rho \cdot M_{s,-1}$$

- Bank Balance Sheet

$$(22) \text{ Government securities held by banks: } B_b = M_s - L_d - H_b$$

$$(23) \text{ Bank advances: } A_d = -B_b, \text{ if } B_b < 0$$

- Bank Profits

$$(24) \text{ Bank profits: } \Pi_b = PAYM_b^L + PAYM_b^H + PAYM_b^B + PAYM_b^R - PAYM_b^M$$

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooo●oooooooooooo

CALIBRATION
oooo

EXPERIMENTS
oooooooooooo

REMARKS
oo

THE LABOUR MARKET

- Employment and Wages

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooo●oooooooooooo

CALIBRATION
oooo

EXPERIMENTS
oooooooooooo

REMARKS
oo

THE LABOUR MARKET

- Employment and Wages

$$(25) \text{ Total wages: } WB = \mathbf{w}^T \cdot \mathbf{n}$$

THE LABOUR MARKET

– Employment and Wages

$$(25) \text{ Total wages: } WB = \mathbf{w}^T \cdot \mathbf{n}$$

$$(26) \text{ Employment levels: } \mathbf{n} = \mathbf{\Lambda} \cdot \mathbf{I} \odot \mathbf{x} + (1_{163} - \mathbf{\Lambda}) \cdot \mathbf{n}_{-1}$$

THE LABOUR MARKET

– Employment and Wages

$$(25) \text{ Total wages: } WB = \mathbf{w}^T \cdot \mathbf{n}$$

$$(26) \text{ Employment levels: } \mathbf{n} = \mathbf{\Lambda} \cdot \mathbf{I} \odot \mathbf{x} + (1_{163} - \mathbf{\Lambda}) \cdot \mathbf{n}_{-1}$$

$$(27) \text{ Total employment: } N = \sum_{j=1}^{163} \mathbf{n}(j)$$

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooo●oooooooo

CALIBRATION
oooo

EXPERIMENTS
oooooooo

REMARKS
oo

INTEREST RATES AND RISK PREMIA

- Interest rate setting

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooo●oooooooo

CALIBRATION
oooo

EXPERIMENTS
oooooooo

REMARKS
oo

INTEREST RATES AND RISK PREMIA

- Interest rate setting

(28) Policy rate: $r = r^*$

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooo●oooooooo

CALIBRATION
oooo

EXPERIMENTS
oooooooo

REMARKS
oo

INTEREST RATES AND RISK PREMIA

- Interest rate setting

(28) Policy rate: $r = r^*$

(29) Interest rate on deposits: $r_m = r + \mu_m$

INTEREST RATES AND RISK PREMIA

- Interest rate setting

(28) Policy rate: $r = r^*$

(29) Interest rate on deposits: $r_m = r + \mu_m$

(30) Interest payments: $PAYM_f^L = r_{f,-1} \cdot L_{f,-1}$

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooo●oooooooo

CALIBRATION
oooo

EXPERIMENTS
oooooooo

REMARKS
oo

THE GOVERNMENT

- Government Revenues and Expenditures

THE GOVERNMENT

– Government Revenues and Expenditures

(31) Net taxes paid by workers: $T_w = \tau_w^w \cdot WB \cdot (1 - \omega) + \tau_z \cdot PAYM_w^A + \tau_v \cdot V_{w,-1}$

THE GOVERNMENT

– Government Revenues and Expenditures

(31) Net taxes paid by workers: $T_w = \tau_w^w \cdot WB \cdot (1 - \omega) + \tau_z \cdot PAYM_w^A + \tau_v \cdot V_{w,-1}$

(32) Government spending: $gov = gov_{-1} + \gamma_0^g - \zeta \cdot \gamma_1^g \cdot \frac{DEF_{-1}}{p_{g,-1}}$

THE GOVERNMENT

– Government Revenues and Expenditures

(31) Net taxes paid by workers: $T_w = \tau_w^w \cdot WB \cdot (1 - \omega) + \tau_z \cdot PAYM_w^A + \tau_v \cdot V_{w,-1}$

(32) Government spending: $gov = gov_{-1} + \gamma_0^g - \zeta \cdot \gamma_1^g \cdot \frac{DEF_{-1}}{p_{g,-1}}$

(33) Government deficit: $DEF = p_g \cdot gov + PAYM_g^B - PAYM_g^{cb} - TAX$

THE GOVERNMENT

– Government Revenues and Expenditures

(31) Net taxes paid by workers: $T_w = \tau_w^w \cdot WB \cdot (1 - \omega) + \tau_z \cdot PAYM_w^A + \tau_v \cdot V_{w,-1}$

(32) Government spending: $gov = gov_{-1} + \gamma_0^g - \zeta \cdot \gamma_1^g \cdot \frac{DEF_{-1}}{p_{g,-1}}$

(33) Government deficit: $DEF = p_g \cdot gov + PAYM_g^B - PAYM_g^{cb} - TAX$

(34) Government debt accumulation: $B_s = B_{s,-1} + DEF$

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooo●oooo

CALIBRATION
oooo

EXPERIMENTS
oooooooo

REMARKS
oo

THE CENTRAL BANK

- Central Bank Operations

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooo●oooo

CALIBRATION
oooo

EXPERIMENTS
oooooooo

REMARKS
oo

THE CENTRAL BANK

– Central Bank Operations

(35) Government securities held by the central bank: $B_{cb} = B_s - B_h - B_b - B_{row}$

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooo●oooo

CALIBRATION
oooo

EXPERIMENTS
oooooooo

REMARKS
oo

THE CENTRAL BANK

– Central Bank Operations

(35) Government securities held by the central bank: $B_{cb} = B_s - B_h - B_b - B_{row}$

(36) Cash issuance by the central bank: $H_s = H_{s,-1} + \Delta B_s$

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooo●oooo

CALIBRATION
oooo

EXPERIMENTS
oooooooo

REMARKS
oo

PORTFOLIO EQUATIONS

- Asset Allocation by Workers

PORTFOLIO EQUATIONS

- Asset Allocation by Workers

(37) Government securities held by workers:

$$\frac{B_w}{V_w} = \lambda_{10}^w - \lambda_{11}^w \cdot r_m + \lambda_{12}^w \cdot r_b - \lambda_{13}^w \cdot r_e - \lambda_{14}^w \cdot (r_q + r_{cg}) - \lambda_{15}^w \cdot \frac{YD_w}{V_w}$$

PORTFOLIO EQUATIONS

– Asset Allocation by Workers

(37) Government securities held by workers:

$$\frac{B_w}{V_w} = \lambda_{10}^w - \lambda_{11}^w \cdot r_m + \lambda_{12}^w \cdot r_b - \lambda_{13}^w \cdot r_e - \lambda_{14}^w \cdot (r_q + r_{cg}) - \lambda_{15}^w \cdot \frac{YD_w}{V_w}$$

(38) Cash demand by workers: $H_w = \lambda_c^w \cdot c_w \cdot p_w^e$

PORTFOLIO EQUATIONS

– Asset Allocation by Workers

(37) Government securities held by workers:

$$\frac{B_w}{V_w} = \lambda_{10}^w - \lambda_{11}^w \cdot r_m + \lambda_{12}^w \cdot r_b - \lambda_{13}^w \cdot r_e - \lambda_{14}^w \cdot (r_q + r_{cg}) - \lambda_{15}^w \cdot \frac{YD_w}{V_w}$$

(38) Cash demand by workers: $H_w = \lambda_c^w \cdot c_w \cdot p_w^e$

(39) Bank deposits as a buffer stock: $M_w = V_w + L_w - H_w - B_w - E_w$

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooo●ooo

CALIBRATION
oooo

EXPERIMENTS
oooooooo

REMARKS
oo

FOREIGN SECTOR

- Trade balance

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooooooo●oooo

CALIBRATION
oooo

EXPERIMENTS
oooooooo

REMARKS
oo

FOREIGN SECTOR

- Trade balance

$$(40) \text{ Exports: } \ln(ex) = \epsilon_0 - \epsilon_1 \cdot \ln\left(\frac{p_x}{p_m}\right) + \epsilon_2 \cdot \ln(y_f)$$

FOREIGN SECTOR

– Trade balance

$$(40) \text{ Exports: } \ln(ex) = \epsilon_0 - \epsilon_1 \cdot \ln\left(\frac{p_x}{p_m}\right) + \epsilon_2 \cdot \ln(y_f)$$

$$(41) \text{ Imports: } \ln(im) = \nu_0 - \nu_1 \cdot \ln\left(\frac{p_m, -1}{p_x, -1}\right) + \nu_2 \cdot \ln\left(\frac{Y_n}{p}\right)$$

FOREIGN SECTOR

- Trade balance

$$(40) \text{ Exports: } \ln(ex) = \epsilon_0 - \epsilon_1 \cdot \ln\left(\frac{p_x}{p_m}\right) + \epsilon_2 \cdot \ln(y_f)$$

$$(41) \text{ Imports: } \ln(im) = \nu_0 - \nu_1 \cdot \ln\left(\frac{p_m, -1}{p_x, -1}\right) + \nu_2 \cdot \ln\left(\frac{Y_n}{p}\right)$$

$$(42) \text{ Domestic securities held by foreign sector: } B_{row} = B_{row, -1} - CAB + \Delta Q_s$$

FOREIGN SECTOR

- Trade balance

$$(40) \text{ Exports: } \ln(ex) = \epsilon_0 - \epsilon_1 \cdot \ln\left(\frac{p_x}{p_m}\right) + \epsilon_2 \cdot \ln(y_f)$$

$$(41) \text{ Imports: } \ln(im) = \nu_0 - \nu_1 \cdot \ln\left(\frac{p_m, -1}{p_x, -1}\right) + \nu_2 \cdot \ln\left(\frac{Y_n}{p}\right)$$

$$(42) \text{ Domestic securities held by foreign sector: } B_{row} = B_{row, -1} - CAB + \Delta Q_s$$

$$(43) \text{ Nominal exchange rate: } xr = \frac{(1+\bar{r}_f) \cdot xr^e}{(1+\bar{r})}$$

FOREIGN SECTOR

– Trade balance

$$(40) \text{ Exports: } \ln(ex) = \epsilon_0 - \epsilon_1 \cdot \ln\left(\frac{p_x}{p_m}\right) + \epsilon_2 \cdot \ln(y_f)$$

$$(41) \text{ Imports: } \ln(im) = \nu_0 - \nu_1 \cdot \ln\left(\frac{p_m, -1}{p_x, -1}\right) + \nu_2 \cdot \ln\left(\frac{Y_n}{p}\right)$$

$$(42) \text{ Domestic securities held by foreign sector: } B_{row} = B_{row, -1} - CAB + \Delta Q_s$$

$$(43) \text{ Nominal exchange rate: } xr = \frac{(1+\bar{r}_f) \cdot xr^e}{(1+\bar{r})}$$

$$(44) \text{ Expected exchange rate: } xr^e = xr_{-1} + \sigma_{xr}^1 \cdot (xr^* - xr_{-1})$$

FOREIGN SECTOR

– Trade balance

$$(40) \text{ Exports: } \ln(ex) = \epsilon_0 - \epsilon_1 \cdot \ln\left(\frac{p_x}{p_m}\right) + \epsilon_2 \cdot \ln(y_f)$$

$$(41) \text{ Imports: } \ln(im) = \nu_0 - \nu_1 \cdot \ln\left(\frac{p_m, -1}{p_x, -1}\right) + \nu_2 \cdot \ln\left(\frac{Y_n}{p}\right)$$

$$(42) \text{ Domestic securities held by foreign sector: } B_{row} = B_{row, -1} - CAB + \Delta Q_s$$

$$(43) \text{ Nominal exchange rate: } xr = \frac{(1+\bar{r}_f) \cdot xr^e}{(1+\bar{r})}$$

$$(44) \text{ Expected exchange rate: } xr^e = xr_{-1} + \sigma_{xr}^1 \cdot (xr^* - xr_{-1})$$

$$(45) \text{ Long-run exchange rate: } xr^* = xr_{-1}^* - \sigma_{xr}^2 \cdot CAB$$

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooooooo●oo

CALIBRATION
oooo

EXPERIMENTS
ooooooo

REMARKS
oo

PRICE EXPECTATIONS

- Price expectations:

INTRODUCTION
○○○○

ACCOUNTING
○○○

EQUATIONS
○○○○○○○○○○●○○

CALIBRATION
○○○○

EXPERIMENTS
○○○○○○○○

REMARKS
○○

PRICE EXPECTATIONS

- Price expectations:

$$(46) \text{ Expected inflation rate: } \pi_w^e = \pi_{w,-1} + \sigma_w \cdot (\bar{\pi} - \pi_{w,-1})$$

PRICE EXPECTATIONS

- Price expectations:

$$(46) \text{ Expected inflation rate: } \pi_w^e = \pi_{w,-1} + \sigma_w \cdot (\bar{\pi} - \pi_{w,-1})$$

$$(47) \text{ Expected price level (for working class): } p_w^e = p_{w,-1} \cdot (1 + \pi_w^e)$$

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooooooo●o

CALIBRATION
oooo

EXPERIMENTS
ooooooo

REMARKS
oo

ENVIRONMENTAL IMPACT

- Emissions accounting

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooooooo●o

CALIBRATION
oooo

EXPERIMENTS
ooooooo

REMARKS
oo

ENVIRONMENTAL IMPACT

- Emissions accounting

(48) Sectoral emissions: $\mathbf{emis} = \boldsymbol{\epsilon} \odot \mathbf{x}$

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooooooo●o

CALIBRATION
oooo

EXPERIMENTS
ooooooo

REMARKS
oo

ENVIRONMENTAL IMPACT

- Emissions accounting

$$(48) \text{ Sectoral emissions: } \mathbf{emis} = \boldsymbol{\epsilon} \odot \mathbf{x}$$

$$(49) \text{ Total emissions: } EMIS = \boldsymbol{\epsilon}^T \cdot \mathbf{x} = \sum_{j=1}^{163} \mathbf{emis}(j)$$

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooooooo●

CALIBRATION
oooo

EXPERIMENTS
ooooooo

REMARKS
oo

HIDDEN EQUATION

- Redundant equation

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooooooo●

CALIBRATION
oooo

EXPERIMENTS
ooooooo

REMARKS
oo

HIDDEN EQUATION

- Redundant equation

(36.B) Cash supply: $H_s = H_w + H_z + H_b$

INTRODUCTION
○○○○

ACCOUNTING
○○○

EQUATIONS
○○○○○○○○○○○○○○○○

CALIBRATION
●○○○

EXPERIMENTS
○○○○○○○○○

REMARKS
○○

MODEL IMPLEMENTATION AND DATA

- Model implemented in an *R* environment.

INTRODUCTION
○○○○

ACCOUNTING
○○○

EQUATIONS
○○○○○○○○○○○○○○○○

CALIBRATION
●○○○

EXPERIMENTS
○○○○○○○○○

REMARKS
○○

MODEL IMPLEMENTATION AND DATA

- Model implemented in an *R* environment.
- Equations expressed in discrete time.

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooooooo

CALIBRATION
●ooo

EXPERIMENTS
ooooooo

REMARKS
oo

MODEL IMPLEMENTATION AND DATA

- Model implemented in an *R* environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooooooo

CALIBRATION
●ooo

EXPERIMENTS
ooooooo

REMARKS
oo

MODEL IMPLEMENTATION AND DATA

- Model implemented in an *R* environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period

MODEL IMPLEMENTATION AND DATA

- Model implemented in an *R* environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 1×10^{-5}

MODEL IMPLEMENTATION AND DATA

- Model implemented in an *R* environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 1×10^{-5}
 - Each period represents one year

MODEL IMPLEMENTATION AND DATA

- Model implemented in an *R* environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 1×10^{-5}
 - Each period represents one year
 - Simulations cover 30 periods

MODEL IMPLEMENTATION AND DATA

- Model implemented in an *R* environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 1×10^{-5}
 - Each period represents one year
 - Simulations cover 30 periods
 - Multidimensional matrices are used

MODEL IMPLEMENTATION AND DATA

- Model implemented in an *R* environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 1×10^{-5}
 - Each period represents one year
 - Simulations cover 30 periods
 - Multidimensional matrices are used
- Macroeconomic data derived from Eurostat (2021, annual)

MODEL IMPLEMENTATION AND DATA

- Model implemented in an *R* environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 1×10^{-5}
 - Each period represents one year
 - Simulations cover 30 periods
 - Multidimensional matrices are used
- Macroeconomic data derived from Eurostat (2021, annual)
- Industry-specific data derived from Exiobase (2021, annual), including:

MODEL IMPLEMENTATION AND DATA

- Model implemented in an *R* environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 1×10^{-5}
 - Each period represents one year
 - Simulations cover 30 periods
 - Multidimensional matrices are used
- Macroeconomic data derived from Eurostat (2021, annual)
- Industry-specific data derived from Exiobase (2021, annual), including:
 - Technical coefficients

MODEL IMPLEMENTATION AND DATA

- Model implemented in an *R* environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 1×10^{-5}
 - Each period represents one year
 - Simulations cover 30 periods
 - Multidimensional matrices are used
- Macroeconomic data derived from Eurostat (2021, annual)
- Industry-specific data derived from Exiobase (2021, annual), including:
 - Technical coefficients
 - Labour coefficients (or wage rates), mark-ups, capital-to-output ratios

MODEL IMPLEMENTATION AND DATA

- Model implemented in an *R* environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 1×10^{-5}
 - Each period represents one year
 - Simulations cover 30 periods
 - Multidimensional matrices are used
- Macroeconomic data derived from Eurostat (2021, annual)
- Industry-specific data derived from Exiobase (2021, annual), including:
 - Technical coefficients
 - Labour coefficients (or wage rates), mark-ups, capital-to-output ratios
 - Demand shares and intermediate imports

MODEL IMPLEMENTATION AND DATA

- Model implemented in an *R* environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 1×10^{-5}
 - Each period represents one year
 - Simulations cover 30 periods
 - Multidimensional matrices are used
- Macroeconomic data derived from Eurostat (2021, annual)
- Industry-specific data derived from Exiobase (2021, annual), including:
 - Technical coefficients
 - Labour coefficients (or wage rates), mark-ups, capital-to-output ratios
 - Demand shares and intermediate imports
 - Greenhouse gas emissions coefficients

INTRODUCTION
○○○○

ACCOUNTING
○○○

EQUATIONS
○○○○○○○○○○○○○○○○

CALIBRATION
○●○○

EXPERIMENTS
○○○○○○○○○

REMARKS
○○

CALIBRATION AND SOURCES

- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooooooo

CALIBRATION
○●○○

EXPERIMENTS
ooooooo

REMARKS
oo

CALIBRATION AND SOURCES

- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):
 - Propensity to consume out of wealth

CALIBRATION AND SOURCES

- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):
 - Propensity to consume out of wealth
 - Loan repayment rate

CALIBRATION AND SOURCES

- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):
 - Propensity to consume out of wealth
 - Loan repayment rate
 - Capital depreciation rate

CALIBRATION AND SOURCES

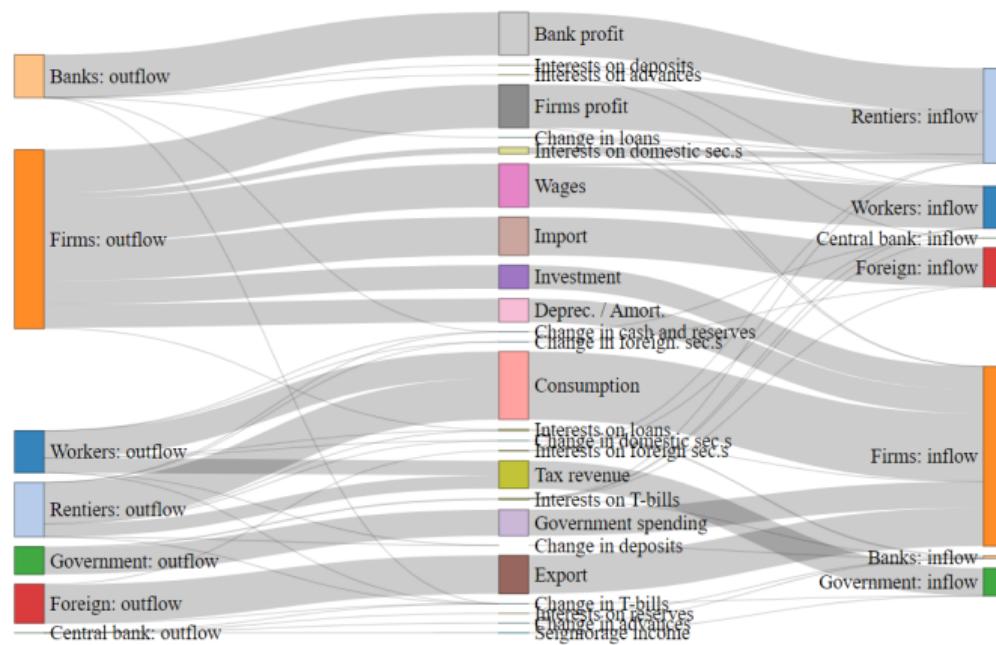
- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):
 - Propensity to consume out of wealth
 - Loan repayment rate
 - Capital depreciation rate
 - Actual reserve requirement ratio

CALIBRATION AND SOURCES

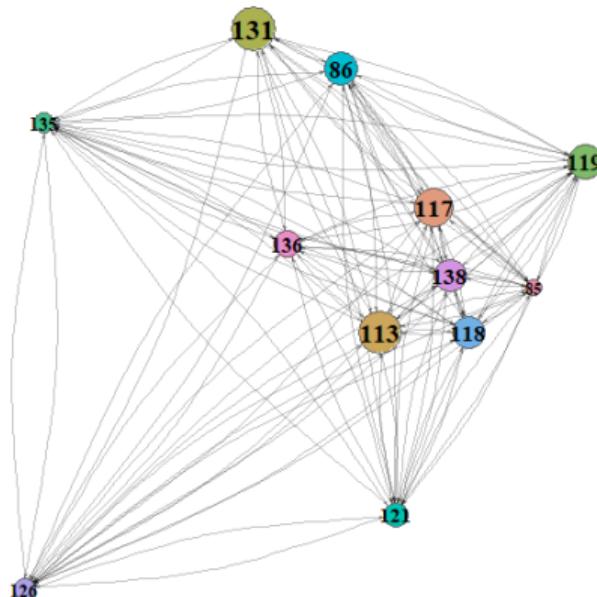
- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):
 - Propensity to consume out of wealth
 - Loan repayment rate
 - Capital depreciation rate
 - Actual reserve requirement ratio
 - Tax rates

CALIBRATION AND SOURCES

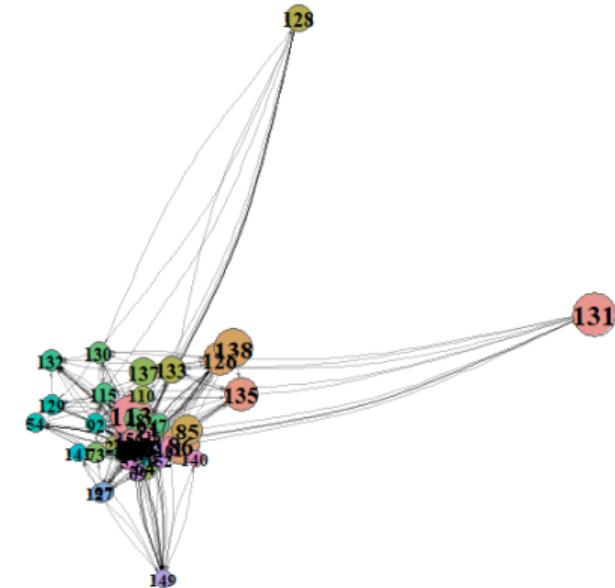
- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):
 - Propensity to consume out of wealth
 - Loan repayment rate
 - Capital depreciation rate
 - Actual reserve requirement ratio
 - Tax rates
 - Autonomous portfolio coefficients


CALIBRATION AND SOURCES

- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):
 - Propensity to consume out of wealth
 - Loan repayment rate
 - Capital depreciation rate
 - Actual reserve requirement ratio
 - Tax rates
 - Autonomous portfolio coefficients
- Remaining parameters and exogenous variables sourced from [Canelli et al. \(2022\)](#).


CALIBRATION AND SOURCES

- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):
 - Propensity to consume out of wealth
 - Loan repayment rate
 - Capital depreciation rate
 - Actual reserve requirement ratio
 - Tax rates
 - Autonomous portfolio coefficients
- Remaining parameters and exogenous variables sourced from [Canelli et al. \(2022\)](#).
- Unit prices normalised to one in 2021.


CROSS-SECTOR TRANSACTIONS IN 2021

CROSS-INDUSTRY INTERDEPENDENCIES IN 2021

(a) Top 12

(b) Top 70

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooooooo

CALIBRATION
oooo

EXPERIMENTS
●ooooooo

REMARKS
oo

BASELINE ASSUMPTIONS AND SHOCKS

- Steady state in 2021: $DEF = 0$, $CAB = 0$, $C = YD$.

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooooooo

CALIBRATION
oooo

EXPERIMENTS
●ooooooo

REMARKS
oo

BASELINE ASSUMPTIONS AND SHOCKS

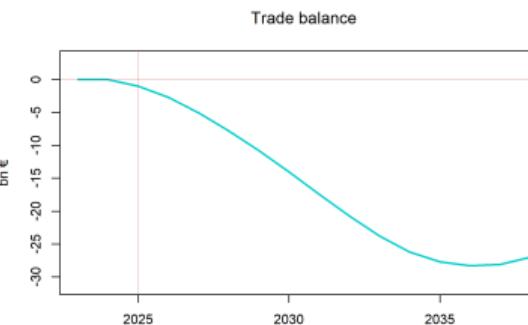
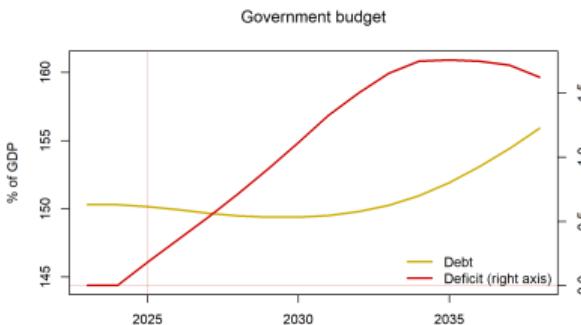
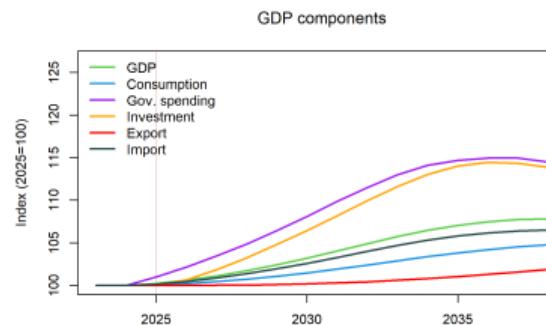
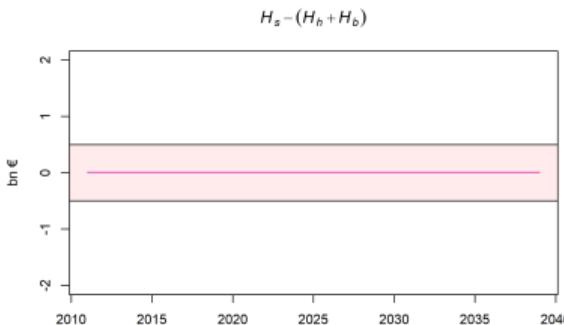
- Steady state in 2021: $DEF = 0$, $CAB = 0$, $C = YD$.
- Prices are unity in 2021, so that value coefficients equal technical coefficients.

BASELINE ASSUMPTIONS AND SHOCKS

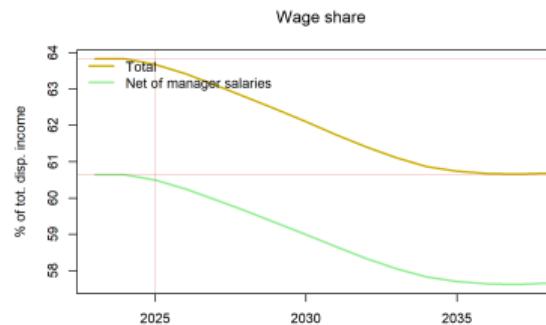
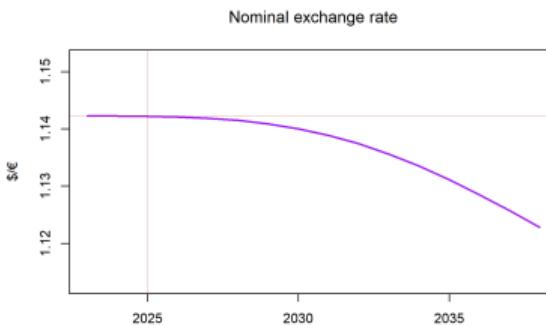
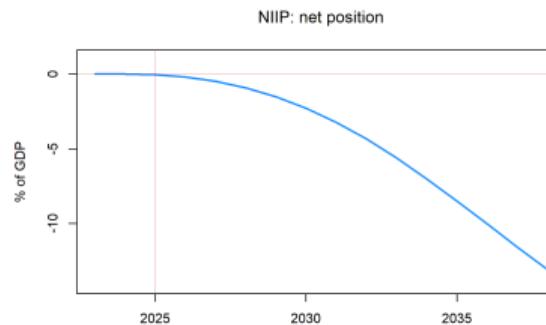
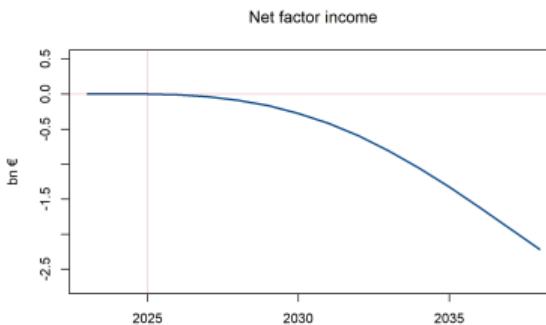
- Steady state in 2021: $DEF = 0$, $CAB = 0$, $C = YD$.
- Prices are unity in 2021, so that value coefficients equal technical coefficients.
- One industry → one technique → one product.

BASELINE ASSUMPTIONS AND SHOCKS

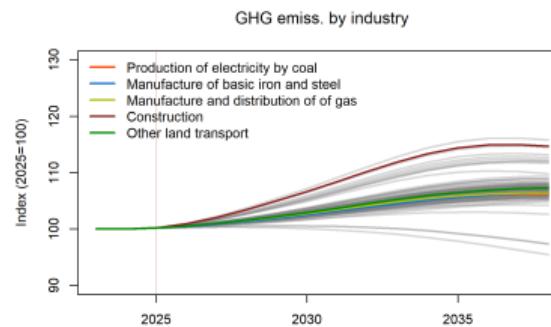
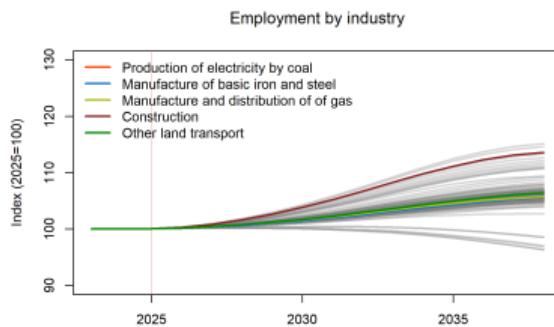
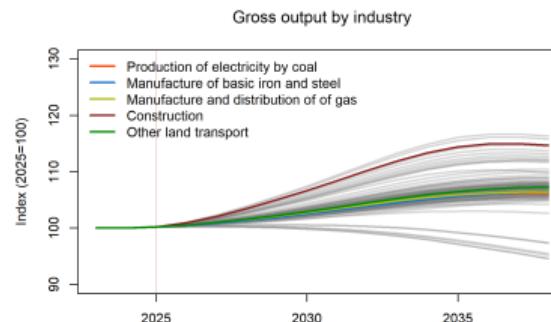
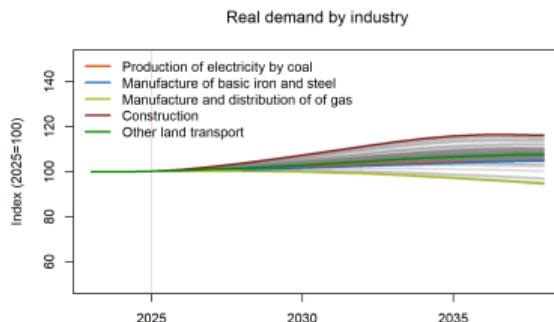
- Steady state in 2021: $DEF = 0$, $CAB = 0$, $C = YD$.
- Prices are unity in 2021, so that value coefficients equal technical coefficients.
- One industry → one technique → one product.
- Alternative scenario: government spending (100 bn euros over 2025-2040).

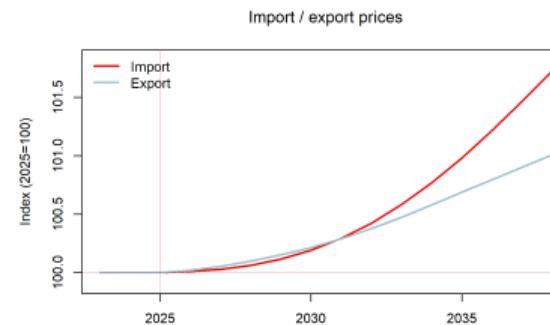
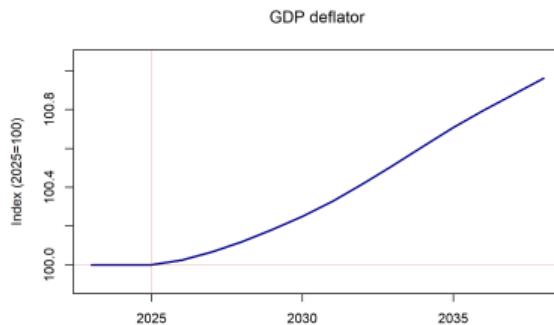
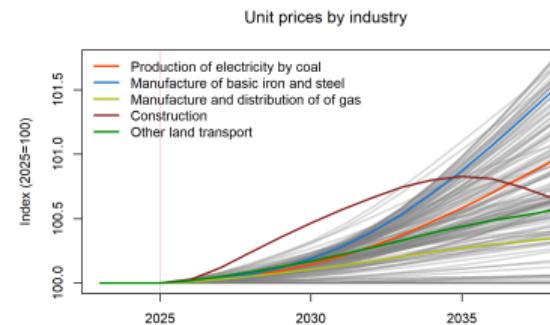
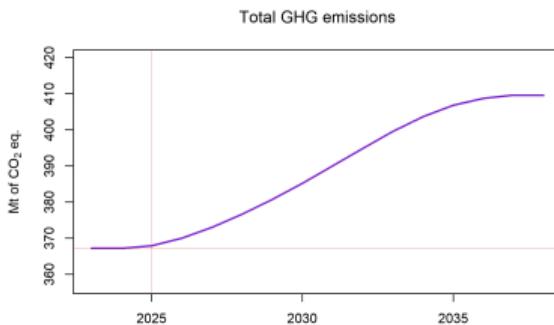




BASELINE ASSUMPTIONS AND SHOCKS

- Steady state in 2021: $DEF = 0$, $CAB = 0$, $C = YD$.
- Prices are unity in 2021, so that value coefficients equal technical coefficients.
- One industry → one technique → one product.
- Alternative scenario: government spending (100 bn euros over 2025-2040).
- No targeted industries.





BASELINE ASSUMPTIONS AND SHOCKS

- Steady state in 2021: $DEF = 0$, $CAB = 0$, $C = YD$.
- Prices are unity in 2021, so that value coefficients equal technical coefficients.
- One industry → one technique → one product.
- Alternative scenario: government spending (100 bn euros over 2025-2040).
- No targeted industries.
- Smooth adjustment of spending.





SELECTED VARIABLES AFTER SHOCK 1





SELECTED VARIABLES AFTER SHOCK 1

SELECTED VARIABLES AFTER SHOCK 1

SELECTED VARIABLES AFTER SHOCK 1

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooooooo

CALIBRATION
oooo

EXPERIMENTS
oooo●ooo

REMARKS
oo

ADDITIONAL EXPERIMENTS

- What if we reallocate resources from industries that produce energy from non-renewable sources to renewable (or greener) energy sources?

INTRODUCTION
oooo

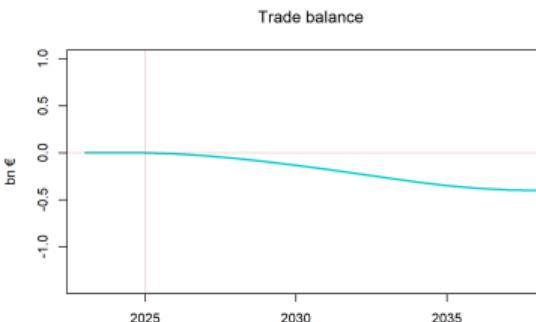
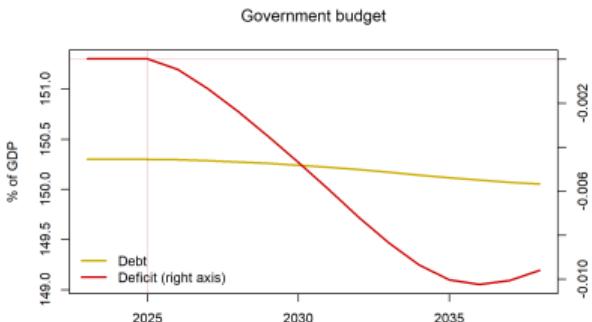
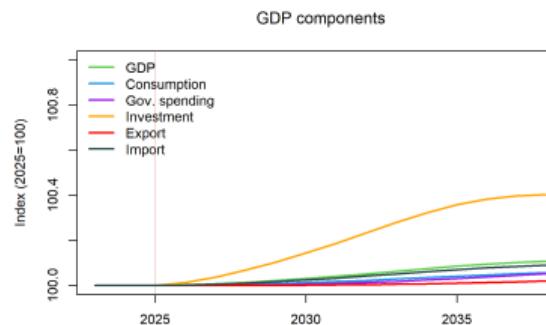
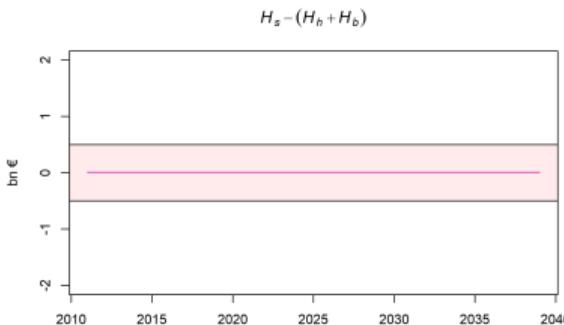
ACCOUNTING
ooo

EQUATIONS
oooooooooooo

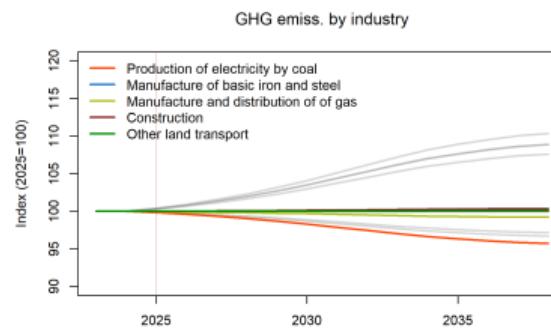
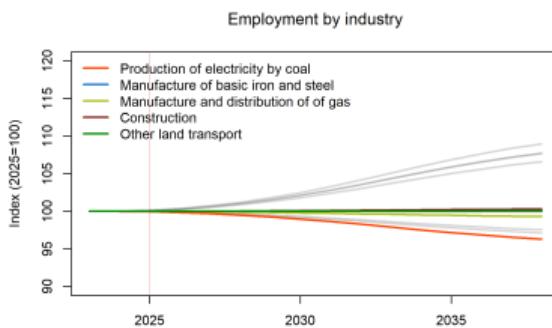
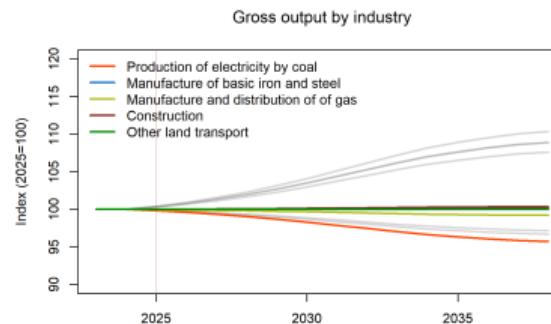
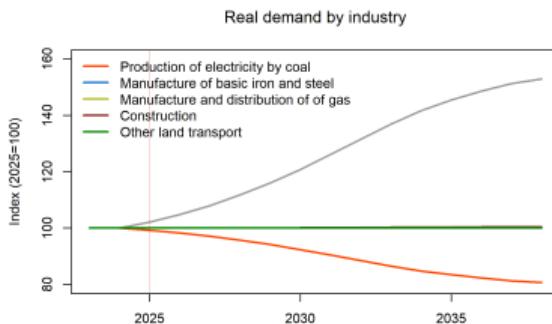
CALIBRATION
oooo

EXPERIMENTS
oooo●ooo

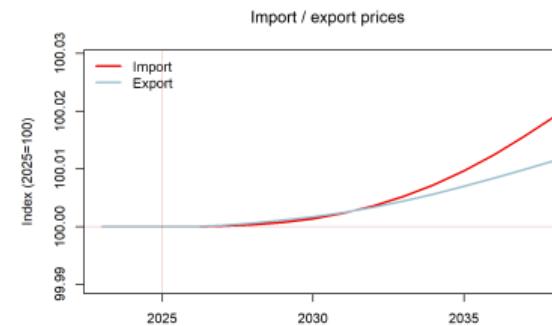
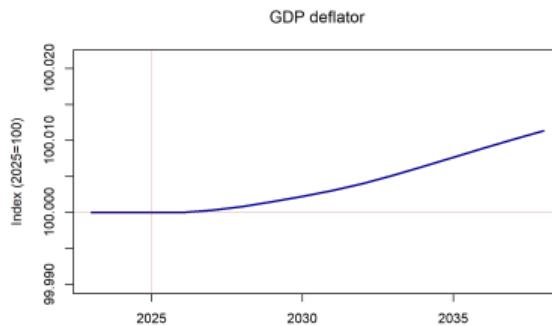
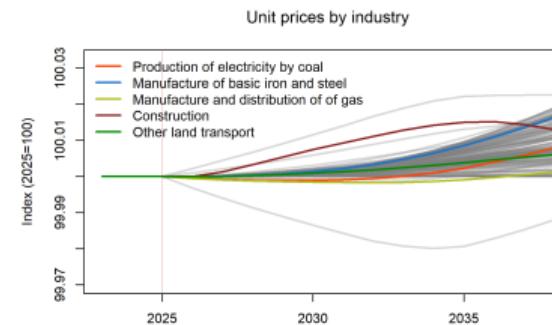
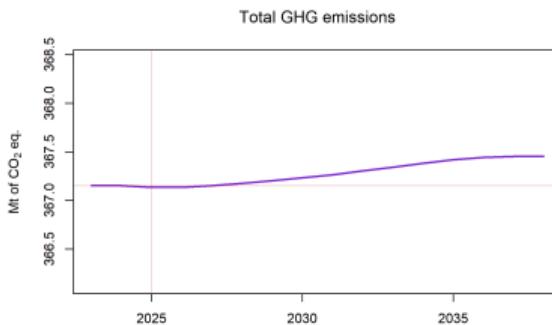
REMARKS
oo





ADDITIONAL EXPERIMENTS

- What if we reallocate resources from industries that produce energy from non-renewable sources to renewable (or greener) energy sources?
- Government disbursements are still proportional to each targeted industry's share of final demand within total demand for the targeted industries.





ADDITIONAL EXPERIMENTS

- What if we reallocate resources from industries that produce energy from non-renewable sources to renewable (or greener) energy sources?
- Government disbursements are still proportional to each targeted industry's share of final demand within total demand for the targeted industries.
- However, to avoid negative disbursements, the size of the intervention is reduced to 1 billion euros.





SELECTED VARIABLES AFTER SHOCK 2

SELECTED VARIABLES AFTER SHOCK 2

SELECTED VARIABLES AFTER SHOCK 2

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooooooo

CALIBRATION
oooo

EXPERIMENTS
ooooooo

REMARKS
●○

FINAL REMARKS

- The chosen calibration method has drawbacks. However, it is simpler, quicker, and more reliable than more complex algorithms.

FINAL REMARKS

- The chosen calibration method has drawbacks. However, it is simpler, quicker, and more reliable than more complex algorithms.
- The model works smoothly and is watertight. However, IO relations must be carefully double-checked.

FINAL REMARKS

- The chosen calibration method has drawbacks. However, it is simpler, quicker, and more reliable than more complex algorithms.
- The model works smoothly and is watertight. However, IO relations must be carefully double-checked.
- Key message from early experiments: the transition takes time (rebound) and is likely to have uneven effects on different social groups.

INTRODUCTION
oooo

ACCOUNTING
ooo

EQUATIONS
oooooooooooo

CALIBRATION
oooo

EXPERIMENTS
ooooooo

REMARKS
oo●

Thank you

Download this presentation from:

www.marcopassarella.it

