Accounting

EQUATIONS 00000000000000000 CALIBRATION

EXPERIMENTS 00000 Remarks 00

An Empirically Calibrated IO-SFC Model for Assessing Green Transition Policies in Italy

Marco Veronese Passarella

University of L'Aquila and University of Leeds

Download this presentation from:

www.marcopassarella.it

AN E-IO-SFC MODEL FOR ITALY

CALIBRATION 0000

EXPERIMENTS

Remarks 00

INTRODUCTION

 JUST2CE: EU-funded project proposing an alternative way of looking at CE.

CALIBRATION 0000

Experiments D0000 Remarks 00

- JUST2CE: EU-funded project proposing an alternative way of looking at CE.
- Most projects have focused on *how* to produce circularity; JUST2CE focuses on *what* (democratic participation, gender, global justice).

CALIBRATION 0000

Experiments 20000 Remarks 00

- JUST2CE: EU-funded project proposing an alternative way of looking at CE.
- Most projects have focused on how to produce circularity; JUST2CE focuses on what (democratic participation, gender, global justice).
- Two main milestones/deliverables linked to WP5:

Remarks 00

- JUST2CE: EU-funded project proposing an alternative way of looking at CE.
- Most projects have focused on *how* to produce circularity; JUST2CE focuses on *what* (democratic participation, gender, global justice).
- Two main milestones/deliverables linked to WP5:
 - A systematic review of current literature on macroeconomic models for assessing the transition towards a CE (Codina et al., 2025a [ECOLEC]).

Calibration

Experiments D0000 Remarks 00

- JUST2CE: EU-funded project proposing an alternative way of looking at CE.
- Most projects have focused on *how* to produce circularity; JUST2CE focuses on *what* (democratic participation, gender, global justice).
- Two main milestones/deliverables linked to WP5:
 - A systematic review of current literature on macroeconomic models for assessing the transition towards a CE (Codina et al., 2025a [ECOLEC]).
 - A formal model to simulate and compare alternative CE policies and transition scenarios (Codina et al., 2025b).

CALIBRATION

Experiments D0000 Remarks 00

The Spinoff

- Codina et al. (2025b) use a 2A-IO-SFC model to assess and compare CE transition scenarios in Europe (and RoW).

CALIBRATION

Experiments D0000 Remarks 00

- Codina et al. (2025b) use a 2A-IO-SFC model to assess and compare CE transition scenarios in Europe (and RoW).
- I use a similar model to simulate energy transition in Italy.

CALIBRATION

Experiments 20000 Remarks 00

- Codina et al. (2025b) use a 2A-IO-SFC model to assess and compare CE transition scenarios in Europe (and RoW).
- I use a similar model to simulate energy transition in Italy.
- Four main differences:

CALIBRATION

Experiments 00000 Remarks 00

- Codina et al. (2025b) use a 2A-IO-SFC model to assess and compare CE transition scenarios in Europe (and RoW).
- I use a similar model to simulate energy transition in Italy.
- Four main differences:
 - Calibration: steady state achieved through equation inversion instead of an interative search algorithm.

CALIBRATION

Experiments 20000 Remarks 00

- Codina et al. (2025b) use a 2A-IO-SFC model to assess and compare CE transition scenarios in Europe (and RoW).
- I use a similar model to simulate energy transition in Italy.
- Four main differences:
 - Calibration: steady state achieved through equation inversion instead of an interative search algorithm.
 - Foreign sector: stylised foreign sector instead of a two-area model.

CALIBRATION

Experiments D0000 Remarks 00

- Codina et al. (2025b) use a 2A-IO-SFC model to assess and compare CE transition scenarios in Europe (and RoW).
- I use a similar model to simulate energy transition in Italy.
- Four main differences:
 - Calibration: steady state achieved through equation inversion instead of an interative search algorithm.
 - Foreign sector: stylised foreign sector instead of a two-area model.
 - Exchange rate: floating regime instead of a fixed regime.

CALIBRATION

Experiments 00000 Remarks 00

- Codina et al. (2025b) use a 2A-IO-SFC model to assess and compare CE transition scenarios in Europe (and RoW).
- I use a similar model to simulate energy transition in Italy.
- Four main differences:
 - Calibration: steady state achieved through equation inversion instead of an interative search algorithm.
 - Foreign sector: stylised foreign sector instead of a two-area model.
 - Exchange rate: floating regime instead of a fixed regime.
 - Ecosystem: GHG emissions only instead of a fully developed environmental block.

CALIBRATION 0000

Experiments 00000 Remarks 00

RECLASS. BALANCE-SHEET OF ITALY IN 2021

	Workers	Rentiers	Firms	Government	Banks	Central bank	Foreign	Total
Cash and reserves	130.44	70.24	0.00	0.00	10.82	-211.5	0.00	0.00
Deposits	1656.88	1355.62	0.00	0.00	-3012.50	0.00	0.00	0.00
Loans	-572.61	-190.87	-871.9	0.00	1635.39	0.00	0.00	0.00
Advances	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
T-bills	34.99	198.27	0.00	-2678.4	1366.29	211.5	867.34	0.00
Domestic securities	686.26	6041.83	-6728.1	0.00	0.00	0.00	0.00	0.00
Foreign securities	0.00	867.34	0.00	0.00	0.00	0.00	-867.34	0.00
Capital stock	0.00	0.00	7600.00	0.00	0.00	0.00	0.00	7600.00
Net financial wealth	-1935.96	-8342.43	0.00	2678.4	0.00	0.00	0.00	-7600.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Reclass. Transactions-Flow Matrix in 2021

	Workers	Rentiers	Firms		Government	Banks	Central bank	Foreign	Total
			Current Capital						
Consumption	-407.94	-622.18	1030.12	0.00	0.00	0.00	0.00	0.00	0.00
Investment	0.00	0.00	357.21	-357.21	0.00	0.00	0.00	0.00	0.00
Government spending	0.00	0.00	394.72	0.00	-394.72	0.00	0.00	0.00	0.00
Export	0.00	0.00	582.19	0.00	0.00	0.00	0.00	-582.19	0.00
Import	0.00	0.00	-582.19	0.00	0.00	0.00	0.00	582.19	0.00
[Value added]			[1782.05]						
Wages	624.62	32.88	-657.50	0.00	0.00	0.00	0.00	0.00	0.00
Deprec. / Amort.	0.00	0.00	-357.21	357.21	0.00	0.00	0.00	0.00	0.00
Firms profit	0.00	653.34	-653.34	0.00	0.00	0.00	0.00	0.00	0.00
Banks profit	0.00	38.19	0.00	0.00	0.00	-38.19	0.00	0.00	0.00
Tax revenue	-218.74	-200.65	0.00	0.00	419.39	0.00	0.00	0.00	0.00
Interests on reserves	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Interests on deposits	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Interests on loans	-8.59	-2.86	-13.08	0.00	0.00	24.53	0.00	0.00	0.00
Interests on advances	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Interests on T-bills	0.35	1.98	0.00	0.00	-26.78	13.66	2.11	8.67	0.00
Interests on domestic sec.s	10.29	90.63	-100.92	0.00	0.00	0.00	0.00	0.00	0.00
Interests on foreign sec.s	0.00	8.67	0.00	0.00	0.00	0.00	0.00	-8.67	0.00
Seigniorage income	0.00	0.00	0.00	0.00	2.11	0.00	-2.11	0.00	0.00
Change in cash and reserves	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Change in deposits	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Change in loans	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Change in advances	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Change in T-bills	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Change in domestic sec.s	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Change in foreign sec.s	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 - のへぐ

Calibration 0000 EXPERIMENTS 00000 Remarks 00

TECHNICAL COEFFICIENTS FROM IO TABLE

 Code	A	в	C*	C19	D	Е	F	G	н	I.	J	к	L	М	N	0	Ρ	Q	R	s
A	0.0698	0.0014	0.0220	0.0007	0.0166	0.0024	0.0006	0.0062	0.0014	0.0223	0.0006	0.0003	0.0001	0.0015	0.0057	0.0015	0.0007	0.0010	0.0046	0.0030
В	0.0002	0.0104	0.0009	0.0655	0.0059	0.0010	0.0014	0.0008	0.0015	0.0008	0.0001	0.0001	0.0001	0.0002	0.0002	0.0004	0.0003	0.0009	0.0005	0.0003
C*	0.1033	0.0569	0.2647	0.0289	0.0317	0.0686	0.1150	0.0435	0.0591	0.1342	0.0442	0.0135	0.0091	0.0525	0.0771	0.0157	0.0085	0.0736	0.0509	0.0527
C19	0.0138	0.0216	0.0032	0.0562	0.0046	0.0043	0.0048	0.0031	0.0238	0.0008	0.0002	0.0005	0.0001	0.0005	0.0012	0.0006	0.0008	0.0004	0.0010	0.0012
D	0.0213	0.0200	0.0165	0.0107	0.3398	0.0317	0.0044	0.0123	0.0170	0.0259	0.0084	0.0038	0.0010	0.0092	0.0018	0.0182	0.0108	0.0154	0.0113	0.0544
E	0.0069	0.0492	0.0112	0.0058	0.0080	0.1266	0.0113	0.0049	0.0067	0.0148	0.0040	0.0008	0.0006	0.0026	0.0043	0.0417	0.0024	0.0049	0.0067	0.0049
F	0.0116	0.0129	0.0078	0.0033	0.0055	0.0150	0.1861	0.0099	0.0150	0.0065	0.0106	0.0041	0.0176	0.0164	0.0136	0.0159	0.0042	0.0131	0.0092	0.0050
G	0.0712	0.0602	0.0824	0.0994	0.0344	0.0306	0.0319	0.0612	0.0530	0.0703	0.0399	0.0274	0.0039	0.0283	0.0400	0.0096	0.0064	0.0370	0.0340	0.0251
н	0.0202	0.0570	0.0324	0.0699	0.0395	0.0493	0.0212	0.0654	0.1710	0.0176	0.0103	0.0061	0.0011	0.0113	0.0258	0.0132	0.0062	0.0115	0.0130	0.0113
1	0.0020	0.0094	0.0035	0.0264	0.0053	0.0043	0.0127	0.0039	0.0128	0.0033	0.0046	0.0010	0.0011	0.0047	0.0143	0.0037	0.0087	0.0041	0.0017	0.0067
J	0.0022	0.0640	0.0123	0.0043	0.0126	0.0226	0.0089	0.0256	0.0171	0.0213	0.1431	0.0303	0.0018	0.0329	0.0198	0.0128	0.0053	0.0101	0.0345	0.0194
к	0.0139	0.0148	0.0159	0.0051	0.0177	0.0156	0.0216	0.0455	0.0230	0.0197	0.0196	0.2118	0.0358	0.0174	0.0235	0.0231	0.0049	0.0109	0.0241	0.0297
L	0.0010	0.0160	0.0091	0.0010	0.0058	0.0118	0.0104	0.0479	0.0204	0.0514	0.0272	0.0242	0.0083	0.0196	0.0166	0.0109	0.0103	0.0180	0.0280	0.0237
M	0.0119	0.0407	0.0317	0.0127	0.0199	0.0354	0.0652	0.0627	0.0365	0.0209	0.0679	0.0295	0.0120	0.1223	0.0819	0.0305	0.0181	0.0277	0.0643	0.0353
N	0.0064	0.0316	0.0179	0.0152	0.0085	0.0653	0.0490	0.0302	0.0338	0.0190	0.0318	0.0087	0.0062	0.0282	0.0499	0.0508	0.0128	0.0229	0.0364	0.0163
0	0.0021	0.0173	0.0049	0.0337	0.0020	0.0412	0.0050	0.0046	0.0055	0.0059	0.0059	0.0014	0.0008	0.0034	0.0048	0.0159	0.0023	0.0039	0.0211	0.0028
P	0.0000	0.0023	0.0012	0.0003	0.0006	0.0017	0.0015	0.0024	0.0023	0.0006	0.0029	0.0006	0.0000	0.0026	0.0037	0.0038	0.0101	0.0035	0.0026	0.0071
Q	0.0008	0.0031	0.0007	0.0022	0.0002	0.0053	0.0010	0.0004	0.0008	0.0005	0.0009	0.0004	0.0001	0.0068	0.0138	0.0024	0.0066	0.0902	0.0160	0.0010
R	0.0003	0.0044	0.0028	0.0212	0.0010	0.0021	0.0038	0.0027	0.0021	0.0094	0.0168	0.0004	0.0005	0.0027	0.0058	0.0011	0.0011	0.0019	0.1302	0.0083
S	0.0037	0.0026	0.0013	0.0093	0.0014	0.0082	0.0024	0.0011	0.0019	0.0016	0.0030	0.0007	0.0003	0.0037	0.0109	0.0046	0.0025	0.0079	0.0087	0.0067

CALIBRATION 0000

Experiments 00000 Remarks 00

INDUSTRIAL STRUCTURE

- Input-output relations

CALIBRATION

EXPERIMENTS

Remarks 00

INDUSTRIAL STRUCTURE

- Input-output relations
 - (1) Total output: $\mathbf{x} = [\mathbf{I} \mathbf{A}]^{-1} \cdot \mathbf{d}$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ ● ● ● ●

CALIBRATION

Experiments D0000 Remarks 00

INDUSTRIAL STRUCTURE

- Input-output relations
 - (1) Total output: $\mathbf{x} = [\mathbf{I} \mathbf{A}]^{-1} \cdot \mathbf{d}$
 - (2) Domestic demand: $\mathbf{d} = \beta_w \cdot c_w + \beta_z \cdot c_z + \iota \cdot i_d + \mathbf{gov} + \chi \cdot ex$

CALIBRATION

Experiments 20000 Remarks 00

INDUSTRIAL STRUCTURE

- Input-output relations
 - (1) Total output: $\mathbf{x} = [\mathbf{I} \mathbf{A}]^{-1} \cdot \mathbf{d}$
 - (2) Domestic demand: $\mathbf{d} = \beta_w \cdot c_w + \beta_z \cdot c_z + \iota \cdot i_d + \mathbf{gov} + \chi \cdot ex$
 - (3) GDP: $Y_n = \mathbf{p}^T \cdot (\mathbf{x} \cdot [\mathbf{I} \mathbf{A}]) \mathbf{p}_m^T \cdot \psi \cdot im$

Accounting

Equations 0000000000000 CALIBRATION 0000

EXPERIMENTS 00000 Remarks 00

PRICE SETTING

- Unit prices and mark-ups

 Equations 0000000000000 CALIBRATION 0000

XPERIMENTS

Remarks 00

PRICE SETTING

- Unit prices and mark-ups
 - (4) Price equation: $\mathbf{p}^T = \mathbf{w} \odot \mathbf{I} + \mathbf{p}^T \cdot \mathbf{A} \odot \boldsymbol{\mu} \odot \mathbf{h}$

CALIBRATION

Experiments 00000 Remarks 00

- Unit prices and mark-ups
 - (4) Price equation: $\mathbf{p}^T = \mathbf{w} \odot \mathbf{I} + \mathbf{p}^T \cdot \mathbf{A} \odot \mu \odot \mathbf{h}$
 - (5) Capital amortisation coefficients: $\mathbf{h} = (1 + \boldsymbol{\kappa} \cdot \delta)$

CALIBRATION

Experiments 00000 Remarks 00

- Unit prices and mark-ups
 - (4) Price equation: $\mathbf{p}^T = \mathbf{w} \odot \mathbf{I} + \mathbf{p}^T \cdot \mathbf{A} \odot \mu \odot \mathbf{h}$
 - (5) Capital amortisation coefficients: $\mathbf{h} = (1 + \boldsymbol{\kappa} \cdot \boldsymbol{\delta})$
 - (6) Mark-ups: $\mu = \mu_0 + \mu_1 \cdot (x_{-1} x_{-1}^*)$

CALIBRATION

Experiments 00000 Remarks 00

- Unit prices and mark-ups
 - (4) Price equation: $\mathbf{p}^T = \mathbf{w} \odot \mathbf{I} + \mathbf{p}^T \cdot \mathbf{A} \odot \boldsymbol{\mu} \odot \mathbf{h}$
 - (5) Capital amortisation coefficients: $\mathbf{h} = (1 + \boldsymbol{\kappa} \cdot \boldsymbol{\delta})$
 - (6) Mark-ups: $\mu = \mu_0 + \mu_1 \cdot (x_{-1} x_{-1}^*)$
 - (7) Potential outputs: $\mathbf{x}^* = \mathbf{x}_{-1}^* + \phi \cdot (\mathbf{x}_{-1} \mathbf{x}_{-1}^*)$

Equations 000000000000 CALIBRATION

Experiments D0000 Remarks 00

- Unit prices and mark-ups
 - (4) Price equation: $\mathbf{p}^T = \mathbf{w} \odot \mathbf{I} + \mathbf{p}^T \cdot \mathbf{A} \odot \boldsymbol{\mu} \odot \mathbf{h}$
 - (5) Capital amortisation coefficients: $\mathbf{h} = (1 + \boldsymbol{\kappa} \cdot \delta)$
 - (6) Mark-ups: $\mu = \mu_0 + \mu_1 \cdot (x_{-1} x_{-1}^*)$
 - (7) Potential outputs: $\mathbf{x}^* = \mathbf{x}_{-1}^* + \boldsymbol{\phi} \cdot (\mathbf{x}_{-1} \mathbf{x}_{-1}^*)$
 - (8) Working-class consumer price index: $p_w = \mathbf{p}^T \cdot \boldsymbol{\beta}_w$

Accounting

Equations 0000000000000 CALIBRATION 0000

EXPERIMENTS 00000 Remarks 00

Households

- Income and consumption

Accounting

Equations 0000000000000 CALIBRATION

EXPERIMENTS

Remarks 00

HOUSEHOLDS

- Income and consumption

(9) Workers' disposable income: $YD_w = WB \cdot (1 - \omega) + PAYM_w^A - PAYM_w^L - T_w$

Equations 0000000000000 CALIBRATION

Experiments 00000 Remarks 00

HOUSEHOLDS

- Income and consumption

(9) Workers' disposable income: $YD_w = WB \cdot (1 - \omega) + PAYM_w^A - PAYM_w^L - T_w$ (10) Net wealth: $V_w = V_{w,-1} + YD_w - p_w \cdot c_w$

Equations 0000000000000 CALIBRATION

Experiments 00000 Remarks 00

HOUSEHOLDS

- Income and consumption
 - (9) Workers' disposable income: $YD_w = WB \cdot (1 - \omega) + PAYM_w^A - PAYM_w^L - T_w$
 - (10) Net wealth: $V_w = V_{w,-1} + YD_w p_w \cdot c_w$
 - (11) Consumption function: $c_w = \alpha_0^w + \alpha_1^w \cdot \frac{YD_w + CG_w}{p_w^e} + \alpha_2^w \cdot \frac{V_{w,-1}}{p_w}$

EQUATIONS 0000000000000 CALIBRATION

Experiments 00000 Remarks 00

HOUSEHOLDS

- Income and consumption
 - (9) Workers' disposable income: $YD_w = WB \cdot (1 - \omega) + PAYM_w^A - PAYM_w^L - T_w$
 - (10) Net wealth: $V_w = V_{w,-1} + YD_w p_w \cdot c_w$
 - (11) Consumption function: $c_w = \alpha_0^w + \alpha_1^w \cdot \frac{YD_w + CG_w}{p_w^e} + \alpha_2^w \cdot \frac{V_{w,-1}}{p_w}$
 - (12) Personal loans: $L_w = L_{w,-1} \cdot (1 \delta_w) + \theta_w \cdot YD_w$

Equations

CALIBRATION 0000

Experiments 00000 Remarks 00

Non-Financial Firms

- Capital and investment decisions

CALIBRATION 0000

Experiments D0000 Remarks 00

Non-Financial Firms

- Capital and investment decisions

(13) Target capital stock: $k^* = \frac{\mathbf{p}_{-1}^T \cdot (\kappa_{-1} \odot \mathbf{x}_{-1})}{\rho_{id,-1}}$

CALIBRATION

Experiments D0000 Remarks 00

Non-Financial Firms

- Capital and investment decisions
 - (13) Target capital stock: $k^* = \frac{\mathbf{p}_{-1}^T \cdot (\kappa_{-1} \odot \mathbf{x}_{-1})}{p_{id,-1}}$
 - (14) Investment function: $i_d = \gamma \cdot (k^* k_{-1}) + da$

CALIBRATION 0000

Experiments D0000 Remarks 00

Non-Financial Firms

- Capital and investment decisions
 - (13) Target capital stock: $k^* = \frac{\mathbf{p}_{-1}^T \cdot (\mathbf{\kappa}_{-1} \odot \mathbf{x}_{-1})}{\rho_{id,-1}}$
 - (14) Investment function: $i_d = \gamma \cdot (k^* k_{-1}) + da$
 - (15) Depreciation: $da = \delta \cdot k_{-1}$

CALIBRATION 0000 Experiments D0000 Remarks 00

Non-Financial Firms

- Capital and investment decisions
 - (13) Target capital stock: $k^* = \frac{\mathbf{p}_{-1}^T \cdot (\kappa_{-1} \odot \mathbf{x}_{-1})}{p_{id,-1}}$
 - (14) Investment function: $i_d = \gamma \cdot (k^* k_{-1}) + da$
 - (15) Depreciation: $da = \delta \cdot k_{-1}$
 - (16) Capital stock evolution: $k = k_{-1} + i_d da$
CALIBRATION 0000

Experiments D0000 Remarks 00

NON-FINANCIAL FIRMS

- Capital and investment decisions
 - (13) Target capital stock: $k^* = \frac{\mathbf{p}_{-1}^T \cdot (\kappa_{-1} \odot \mathbf{x}_{-1})}{p_{id,-1}}$
 - (14) Investment function: $i_d = \gamma \cdot (k^* k_{-1}) + da$
 - (15) Depreciation: $da = \delta \cdot k_{-1}$
 - (16) Capital stock evolution: $k = k_{-1} + i_d da$
- Firms' financial accounts

◆□ > ◆母 > ◆豆 > ◆豆 > ● □ ● ◆ ○ > ◆ □ >

Experiments 00000 Remarks 00

Non-Financial Firms

- Capital and investment decisions
 - (13) Target capital stock: $k^* = \frac{\mathbf{p}_{-1}^T \cdot (\kappa_{-1} \odot \mathbf{x}_{-1})}{p_{id,-1}}$
 - (14) Investment function: $i_d = \gamma \cdot (k^* k_{-1}) + da$
 - (15) Depreciation: $da = \delta \cdot k_{-1}$
 - (16) Capital stock evolution: $k = k_{-1} + i_d da$
- Firms' financial accounts

(17) Total profits: $\Pi_f = Y_n - WB - AF - PAYM_f^L - PAYM_f^E$

<ロ> < 回> < 回> < 三> < 三> < 三</p>

AN E-IO-SFC MODEL FOR ITALY

Experiments D0000 Remarks 00

Non-Financial Firms

- Capital and investment decisions
 - (13) Target capital stock: $k^* = \frac{\mathbf{p}_{-1}^T \cdot (\kappa_{-1} \odot \mathbf{x}_{-1})}{p_{id,-1}}$
 - (14) Investment function: $i_d = \gamma \cdot (k^* k_{-1}) + da$
 - (15) Depreciation: $da = \delta \cdot k_{-1}$
 - (16) Capital stock evolution: $k = k_{-1} + i_d da$
- Firms' financial accounts
 - (17) Total profits: $\Pi_f = Y_n WB AF PAYM_f^L PAYM_f^E$
 - (18) Retained profits: $\Pi_u = \eta \cdot \Pi_f$

Experiments D0000 Remarks 00

Non-Financial Firms

- Capital and investment decisions

- (13) Target capital stock: $k^* = \frac{\mathbf{p}_{-1}^T \cdot (\kappa_{-1} \odot \mathbf{x}_{-1})}{p_{id,-1}}$
- (14) Investment function: $i_d = \gamma \cdot (k^* k_{-1}) + da$
- (15) Depreciation: $da = \delta \cdot k_{-1}$
- (16) Capital stock evolution: $k = k_{-1} + i_d da$
- Firms' financial accounts
 - (17) Total profits: $\Pi_f = Y_n WB AF PAYM_f^L PAYM_f^E$
 - (18) Retained profits: $\Pi_u = \eta \cdot \Pi_f$
 - (19) Firms' net borrowing: $L_f = L_{f,-1} + p_{id} \cdot id AF \prod_u \Delta E_s$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○ ○ ○ ○ ○

AN E-IO-SFC MODEL FOR ITALY

INTRODUCTION 00 Accounting

Equations 0000000000000 CALIBRATION 0000

Experiments 00000 Remarks 00

BANKS AND FINANCE

- Loans and Reserves

<ロ> < 回> < 回> < 三> < 三> < 三</p>

AN E-IO-SFC MODEL FOR ITALY

CALIBRATION

Experiments 00000 Remarks 00

BANKS AND FINANCE

- Loans and Reserves

(20) Supply of loans: $L_s = L_{s,-1} + \Delta L_f + \Delta L_w + \Delta L_z$

<ロ> < 回> < 回> < 三> < 三> < 三</p>

CALIBRATION

Experiments D0000 Remarks 00

BANKS AND FINANCE

- Loans and Reserves
 - (20) Supply of loans: $L_s = L_{s,-1} + \Delta L_f + \Delta L_w + \Delta L_z$
 - (21) Bank reserves: $H_b = \rho \cdot M_{s,-1}$

CALIBRATION

Experiments D0000 Remarks 00

BANKS AND FINANCE

- Loans and Reserves
 - (20) Supply of loans: $L_s = L_{s,-1} + \Delta L_f + \Delta L_w + \Delta L_z$
 - (21) Bank reserves: $H_b = \rho \cdot M_{s,-1}$
- Bank Balance Sheet

CALIBRATION

Experiments D0000 Remarks 00

BANKS AND FINANCE

- Loans and Reserves
 - (20) Supply of loans: $L_s = L_{s,-1} + \Delta L_f + \Delta L_w + \Delta L_z$
 - (21) Bank reserves: $H_b = \rho \cdot M_{s,-1}$
- Bank Balance Sheet

(22) Government securities held by banks: $B_b = M_s - L_d - H_b$

CALIBRATION

Experiments D0000 Remarks 00

BANKS AND FINANCE

- Loans and Reserves
 - (20) Supply of loans: $L_s = L_{s,-1} + \Delta L_f + \Delta L_w + \Delta L_z$
 - (21) Bank reserves: $H_b = \rho \cdot M_{s,-1}$
- Bank Balance Sheet

(22) Government securities held by banks: $B_b = M_s - L_d - H_b$

(23) Bank advances: $A_d = -B_b$, if $B_b < 0$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ▲ 日 ◆ ◎ ヘ ○

CALIBRATION

Experiments D0000 Remarks 00

BANKS AND FINANCE

- Loans and Reserves
 - (20) Supply of loans: $L_s = L_{s,-1} + \Delta L_f + \Delta L_w + \Delta L_z$
 - (21) Bank reserves: $H_b = \rho \cdot M_{s,-1}$
- Bank Balance Sheet

(22) Government securities held by banks: $B_b = M_s - L_d - H_b$

(23) Bank advances: $A_d = -B_b$, if $B_b < 0$

- Bank Profits

Equations 0000000000000 CALIBRATION

Experiments D0000 Remarks 00

BANKS AND FINANCE

- Loans and Reserves
 - (20) Supply of loans: $L_s = L_{s,-1} + \Delta L_f + \Delta L_w + \Delta L_z$
 - (21) Bank reserves: $H_b = \rho \cdot M_{s,-1}$
- Bank Balance Sheet

(22) Government securities held by banks: $B_b = M_s - L_d - H_b$

- (23) Bank advances: $A_d = -B_b$, if $B_b < 0$
- Bank Profits

(24) Bank profits: $\Pi_{b} = PAYM_{b}^{L} + PAYM_{b}^{H} + PAYM_{b}^{B} + PAYM_{b}^{R} - PAYM_{b}^{M}$

AN E-IO-SFC MODEL FOR ITALY

 CALIBRATION 0000

Experiments 00000 Remarks 00

The Labour Market

- Employment and Wages

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ ● ● ● ●

INTRODUCTION 00 ACCOUNTING 000

 CALIBRATION 0000

Experiments 00000 Remarks 00

The Labour Market

- Employment and Wages
 - (25) Total wages: $WB = \mathbf{w}^T \cdot \mathbf{n}$

 CALIBRATION

Experiments D0000 Remarks 00

The Labour Market

- Employment and Wages
 - (25) Total wages: $WB = \mathbf{w}^T \cdot \mathbf{n}$
 - (26) Employment levels: $\mathbf{n} = \mathbf{\Lambda} \cdot \mathbf{I} \odot \mathbf{x} + (\mathbf{1}_{20} \mathbf{\Lambda}) \cdot \mathbf{n}_{-1}$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ ● ● ● ●

 CALIBRATION

Experiments D0000 Remarks 00

The Labour Market

- Employment and Wages
 - (25) Total wages: $WB = \mathbf{w}^T \cdot \mathbf{n}$
 - (26) Employment levels: $\mathbf{n} = \mathbf{\Lambda} \cdot \mathbf{I} \odot \mathbf{x} + (\mathbf{1}_{20} \mathbf{\Lambda}) \cdot \mathbf{n}_{-1}$
 - (27) Total employment: $N = \sum_{j=1}^{20} \mathbf{n}(j)$

CALIBRATION 0000

EXPERIMENTS 00000 Remarks 00

INTEREST RATES AND RISK PREMIA

- Interest rate setting

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ▲ 日 ◆ ◎ ヘ ○

AN E-IO-SFC MODEL FOR ITALY

 CALIBRATION 0000

Experiments D0000 Remarks 00

INTEREST RATES AND RISK PREMIA

- Interest rate setting
 - (28) Policy rate: $r = r^*$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ ● ● ● ●

Experiments 20000 Remarks 00

INTEREST RATES AND RISK PREMIA

- Interest rate setting
 - (28) Policy rate: $r = r^*$
 - (29) Interest rate on deposits: $r_m = r + \mu_m$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ ● ● ● ●

Experiments 20000 Remarks 00

INTEREST RATES AND RISK PREMIA

- Interest rate setting
 - (28) Policy rate: $r = r^*$
 - (29) Interest rate on deposits: $r_m = r + \mu_m$
 - (30) Interest payments: $PAYM_f^L = r_{I,-1} \cdot L_{f,-1}$

Equations 00000000000000 CALIBRATION 0000

Experiments 00000 Remarks 00

The Government

- Government Revenues and Expenditures

 CALIBRATION

Experiments D0000 Remarks 00

- Government Revenues and Expenditures
 - (31) Net taxes paid by workers: $T_{w} = \tau_{w}^{w} \cdot WB \cdot (1 - \omega) + \tau_{z} \cdot PAYM_{w}^{A} + \tau_{v} \cdot V_{w,-1}$

CALIBRATION

Experiments 20000 Remarks 00

- Government Revenues and Expenditures
 - (31) Net taxes paid by workers: $T_{w} = \tau_{w}^{w} \cdot WB \cdot (1 - \omega) + \tau_{z} \cdot PAYM_{w}^{A} + \tau_{v} \cdot V_{w,-1}$ (22) Comparison of the product of the product
 - (32) Government spending: $gov = gov_{-1} + \gamma_0^g \zeta \cdot \gamma_1^g \cdot \frac{DEF_{-1}}{p_{g,-1}}$

CALIBRATION

Experiments D0000 Remarks 00

- Government Revenues and Expenditures
 - (31) Net taxes paid by workers: $T_w = \tau_w^w \cdot WB \cdot (1 - \omega) + \tau_z \cdot PAYM_w^A + \tau_v \cdot V_{w,-1}$
 - (32) Government spending: $\mathbf{gov} = \mathbf{gov}_{-1} + \gamma_0^g \boldsymbol{\zeta} \cdot \gamma_1^g \cdot \frac{DEF_{-1}}{p_{g-1}}$
 - (33) Government deficit: $DEF = p_g \cdot gov + PAYM_g^B - PAYM_g^{cb} - TAX$

CALIBRATION 0000 Experiments D0000 Remarks 00

- Government Revenues and Expenditures
 - (31) Net taxes paid by workers: $T_{w} = \tau_{w}^{w} \cdot WB \cdot (1 - \omega) + \tau_{z} \cdot PAYM_{w}^{A} + \tau_{v} \cdot V_{w,-1}$
 - (32) Government spending: $\mathbf{gov} = \mathbf{gov}_{-1} + \gamma_0^g \boldsymbol{\zeta} \cdot \gamma_1^g \cdot \frac{DEF_{-1}}{p_{g_{-1}}}$
 - (33) Government deficit: $DEF = p_g \cdot gov + PAYM_g^B - PAYM_g^{cb} - TAX$
 - (34) Government debt accumulation: $B_s = B_{s,-1} + DEF$

INTRODUCTION 00 EQUATIONS 00000000000000 CALIBRATION 0000

Experiments 00000 Remarks 00

The Central Bank

- Central Bank Operations

<ロ> < 回> < 回> < 三> < 三> < 三</p>

Experiments D0000 Remarks 00

The Central Bank

- Central Bank Operations

(35) Government securities held by the central bank: $B_{cb} = B_s - B_h - B_b - B_{row}$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ ● ● ● ●

Experiments 00000 Remarks 00

The Central Bank

- Central Bank Operations
 - (35) Government securities held by the central bank: $B_{cb} = B_s - B_h - B_b - B_{row}$
 - (36) Cash issuance by the central bank: $H_s = H_{s,-1} + \Delta B_s$

INTRODUCTION 00 Accounting 000

 CALIBRATION 0000

Experiments 00000 Remarks 00

PORTFOLIO EQUATIONS

- Asset Allocation by Workers

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ ● ● ● ●

AN E-IO-SFC MODEL FOR ITALY

Experiments D0000 Remarks 00

PORTFOLIO EQUATIONS

- Asset Allocation by Workers

(37) Government securities held by workers: $\frac{B_w}{V_w} = \lambda_{10}^w - \lambda_{11}^w \cdot r_m + \lambda_{12}^w \cdot r_b - \lambda_{13}^w \cdot r_e - \lambda_{14}^w \cdot (r_q + r_{cg}) - \lambda_{15}^w \cdot \frac{YD_w}{V_w}$

Experiments 20000 Remarks 00

PORTFOLIO EQUATIONS

- Asset Allocation by Workers
 - (37) Government securities held by workers: $\frac{B_w}{V_w} = \lambda_{10}^w - \lambda_{11}^w \cdot r_m + \lambda_{12}^w \cdot r_b - \lambda_{13}^w \cdot r_e - \lambda_{14}^w \cdot (r_q + r_{cg}) - \lambda_{15}^w \cdot \frac{YD_w}{V_w}$
 - (38) Cash demand by workers: $H_w = \lambda_c^w \cdot c_w \cdot p_w^e$

Experiments D0000 Remarks 00

PORTFOLIO EQUATIONS

- Asset Allocation by Workers
 - (37) Government securities held by workers: $\frac{B_w}{V_w} = \lambda_{10}^w - \lambda_{11}^w \cdot r_m + \lambda_{12}^w \cdot r_b - \lambda_{13}^w \cdot r_e - \lambda_{14}^w \cdot (r_q + r_{cg}) - \lambda_{15}^w \cdot \frac{YD_w}{V_w}$
 - (38) Cash demand by workers: $H_w = \lambda_c^w \cdot c_w \cdot p_w^e$
 - (39) Bank deposits as a buffer stock: $M_w = V_w + L_w - H_w - B_w - E_w$

INTRODUCTION 00 ACCOUNTING 000

Equations 0000000000000000 CALIBRATION 0000

EXPERIMENTS 00000 Remarks 00

FOREIGN SECTOR

- Trade balance

<ロ> < 回> < 回> < 三> < 三> < 三</p>

AN E-IO-SFC MODEL FOR ITALY

CALIBRATION

XPERIMENTS

Remarks 00

FOREIGN SECTOR

- Trade balance

(40) Exports: $ln(ex) = \epsilon_0 - \epsilon_1 \cdot ln(\frac{p_x}{p_m}) + \epsilon_2 \cdot ln(y_f)$

<ロ> < 回> < 回> < 三> < 三> < 三</p>

CALIBRATION

XPERIMENTS

Remarks 00

FOREIGN SECTOR

- Trade balance
 - (40) Exports: $ln(ex) = \epsilon_0 \epsilon_1 \cdot ln(\frac{p_x}{p_m}) + \epsilon_2 \cdot ln(y_f)$
 - (41) Imports: $ln(im) = \nu_0 \nu_1 \cdot ln(\frac{p_m, -1}{p_x, -1}) + \nu_2 \cdot ln(\frac{\gamma_n}{p})$

Experiments 00000 Remarks 00

FOREIGN SECTOR

- Trade balance
 - (40) Exports: $ln(ex) = \epsilon_0 \epsilon_1 \cdot ln(\frac{p_x}{p_m}) + \epsilon_2 \cdot ln(y_f)$
 - (41) Imports: $ln(im) = \nu_0 \nu_1 \cdot ln(\frac{p_m, -1}{p_x, -1}) + \nu_2 \cdot ln(\frac{Y_n}{p})$
 - (42) Domestic securities held by foreign sector: $B_{row} = B_{row,-1} - CAB + \Delta Q_s$
Experiments 00000 Remarks 00

FOREIGN SECTOR

- Trade balance
 - (40) Exports: $ln(ex) = \epsilon_0 \epsilon_1 \cdot ln(\frac{p_x}{p_m}) + \epsilon_2 \cdot ln(y_f)$
 - (41) Imports: $ln(im) = \nu_0 \nu_1 \cdot ln(\frac{p_m, -1}{p_x, -1}) + \nu_2 \cdot ln(\frac{Y_n}{p})$
 - (42) Domestic securities held by foreign sector: $B_{row} = B_{row,-1} - CAB + \Delta Q_s$
 - (43) Nominal exchange rate: $xr = \frac{(1+\bar{r}_f)\cdot xr^e}{(1+\bar{r})}$

Experiments 00000 Remarks 00

FOREIGN SECTOR

- Trade balance
 - (40) Exports: $ln(ex) = \epsilon_0 \epsilon_1 \cdot ln(\frac{p_x}{p_m}) + \epsilon_2 \cdot ln(y_f)$
 - (41) Imports: $ln(im) = \nu_0 \nu_1 \cdot ln(\frac{p_m, -1}{p_x, -1}) + \nu_2 \cdot ln(\frac{\gamma_n}{p})$
 - (42) Domestic securities held by foreign sector: $B_{row} = B_{row,-1} - CAB + \Delta Q_s$
 - (43) Nominal exchange rate: $xr = \frac{(1+\bar{r}_f)\cdot xr^e}{(1+\bar{r})}$
 - (44) Expected exchange rate: $xr^e = xr_{-1} + \sigma_{xr}^1 \cdot (xr^* xr_{-1})$

Experiments D0000 Remarks 00

FOREIGN SECTOR

- Trade balance
 - (40) Exports: $ln(ex) = \epsilon_0 \epsilon_1 \cdot ln(\frac{p_x}{p_m}) + \epsilon_2 \cdot ln(y_f)$
 - (41) Imports: $ln(im) = \nu_0 \nu_1 \cdot ln(\frac{p_m, -1}{p_x, -1}) + \nu_2 \cdot ln(\frac{Y_n}{p})$
 - (42) Domestic securities held by foreign sector: $B_{row} = B_{row,-1} - CAB + \Delta Q_s$
 - (43) Nominal exchange rate: $xr = \frac{(1+\bar{r}_f)\cdot xr^e}{(1+\bar{r})}$
 - (44) Expected exchange rate: $xr^e = xr_{-1} + \sigma_{xr}^1 \cdot (xr^* xr_{-1})$
 - (45) Long-run exchange rate: $xr^* = xr_{-1}^* \sigma_{xr}^2 \cdot CAB$

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 三 - のへで

Equations 0000000000000000 CALIBRATION 0000

EXPERIMENTS 00000 Remarks 00

PRICE EXPECTATIONS

- Price expectations:

<ロ> < 回> < 回> < 三> < 三> < 三</p>

EQUATIONS 000000000000000 CALIBRATION 0000

Experiments D0000 Remarks 00

PRICE EXPECTATIONS

- Price expectations:

(46) Expected inflation rate: $\pi_w^e = \pi_{w,-1} + \sigma_w \cdot (\bar{\pi} - \pi_{w,-1})$

<ロ> < 回> < 回> < 三> < 三> < 三</p>

EQUATIONS 00000000000000

CALIBRATION

Experiments D0000 Remarks 00

PRICE EXPECTATIONS

- Price expectations:
 - (46) Expected inflation rate: $\pi_w^e = \pi_{w,-1} + \sigma_w \cdot (\bar{\pi} \pi_{w,-1})$
 - (47) Expected price level (for working class): $p_w^e = p_{w,-1} \cdot (1 + \pi_w^e)$

Equations 0000000000000000 CALIBRATION 0000

Experiments 00000 Remarks 00

ENVIRONMENTAL IMPACT

- Emissions accounting

EQUATIONS 000000000000

CALIBRATION 0000

XPERIMENTS

Remarks 00

ENVIRONMENTAL IMPACT

- Emissions accounting
 - (48) Sectoral emissions: **emis** = $\epsilon \odot \mathbf{x}$

Experiments D0000 Remarks 00

ENVIRONMENTAL IMPACT

- Emissions accounting
 - (48) Sectoral emissions: **emis** = $\epsilon \odot \mathbf{x}$
 - (49) Total emissions: $EMIS = \epsilon^T \cdot \mathbf{x} = \sum_{j=1}^{20} \mathbf{emis}(j)$

Accounting

Equations 00000000000000 CALIBRATION 0000

Experiments 00000 Remarks 00

HIDDEN EQUATION

- Redundant equation

<ロ> < 回> < 回> < 三> < 三> < 三</p>

AN E-IO-SFC MODEL FOR ITALY

EQUATIONS 00000000000

CALIBRATION 0000

XPERIMENTS

Remarks 00

HIDDEN EQUATION

- Redundant equation
- (36.B) Cash supply: $H_s = H_w + H_z + H_b$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ ● ● ● ●

Accounting

CALIBRATION •000 Experiments 00000 Remarks 00

MODEL IMPLEMENTATION AND DATA

- Model implemented in an R environment.

・ロト < 団ト < 三ト < 三ト < 日 > < 〇 < ○

Accounting 000

EQUATIONS 000000000000000000 CALIBRATION •000 Experiments 00000 Remarks 00

- Model implemented in an R environment.
- Equations expressed in discrete time.

Accounting 000 EQUATIONS 00000000000000000 CALIBRATION •000 Experiments 00000 Remarks 00

- Model implemented in an R environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:

Accounting 000 EQUATIONS 00000000000000000 CALIBRATION •000 Experiments 00000 Remarks 00

- Model implemented in an R environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period

Accounting 000 EQUATIONS 00000000000000000 CALIBRATION •000 Experiments 00000 Remarks 00

- Model implemented in an R environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 0.001

Accounting 000 EQUATIONS 00000000000000000 CALIBRATION •000 Experiments 00000 Remarks 00

- Model implemented in an R environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 0.001
 - Each period represents one year

Accounting 000 EQUATIONS 00000000000000000 CALIBRATION •000 Experiments 00000 Remarks 00

- Model implemented in an R environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 0.001
 - Each period represents one year
 - Simulations cover 30 periods

Accounting 000 EQUATIONS 0000000000000 CALIBRATION •000 Experiments 00000 Remarks 00

MODEL IMPLEMENTATION AND DATA

- Model implemented in an R environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 0.001
 - Each period represents one year
 - Simulations cover 30 periods

Accounting 000 EQUATIONS 0000000000000 CALIBRATION •000 Experiments 00000 Remarks 00

- Model implemented in an R environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 0.001
 - Each period represents one year
 - Simulations cover 30 periods
- Data for each industry derived from Eurostat (2020, annual):
 - Technical coefficients

Accounting 000 EQUATIONS 0000000000000 CALIBRATION 0000

Experiments 00000 Remarks 00

- Model implemented in an R environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 0.001
 - Each period represents one year
 - Simulations cover 30 periods
- Data for each industry derived from Eurostat (2020, annual):
 - Technical coefficients
 - Labour coefficients

Accounting 000 EQUATIONS 0000000000000 CALIBRATION •000 Experiments 00000 Remarks 00

MODEL IMPLEMENTATION AND DATA

- Model implemented in an R environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 0.001
 - Each period represents one year
 - Simulations cover 30 periods

- Technical coefficients
- Labour coefficients
- Greenhouse gas emissions coefficients

Accounting 000 EQUATIONS 0000000000000 CALIBRATION 0000

Experiments 00000 Remarks 00

MODEL IMPLEMENTATION AND DATA

- Model implemented in an R environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 0.001
 - Each period represents one year
 - Simulations cover 30 periods

- Technical coefficients
- Labour coefficients
- Greenhouse gas emissions coefficients
- Capital-to-output ratios

Accounting 000 EQUATIONS 0000000000000 CALIBRATION •000 Experiments 00000 Remarks 00

MODEL IMPLEMENTATION AND DATA

- Model implemented in an R environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 0.001
 - Each period represents one year
 - Simulations cover 30 periods

- Technical coefficients
- Labour coefficients
- Greenhouse gas emissions coefficients
- Capital-to-output ratios
- Demand shares (including import shares)

Accounting 000 Equations 00000000000000 CALIBRATION 0000

Experiments 00000 Remarks 00

CALIBRATION AND SOURCES

 Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):

Accounting 000 Equations 00000000000000 CALIBRATION 0000

Experiments 00000 Remarks 00

- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):
 - Propensity to consume out of wealth

Accounting 000 Equations 00000000000000 CALIBRATION 0000

Experiments 00000 Remarks 00

- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):
 - Propensity to consume out of wealth
 - Loan repayment rate

Accounting 000 EQUATIONS 00000000000000 CALIBRATION 0000

Experiments 00000 Remarks 00

- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):
 - Propensity to consume out of wealth
 - Loan repayment rate
 - Capital depreciation rate

Accounting 000

EQUATIONS 000000000000000000 CALIBRATION 0000

Experiments 00000 Remarks 00

- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):
 - Propensity to consume out of wealth
 - Loan repayment rate
 - Capital depreciation rate
 - Actual reserve requirement ratio

Accounting 000 EQUATIONS 000000000000000000 CALIBRATION 0000

Experiments 00000 Remarks 00

- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):
 - Propensity to consume out of wealth
 - Loan repayment rate
 - Capital depreciation rate
 - Actual reserve requirement ratio
 - Average tax rate

Accounting 000 EQUATIONS 00000000000000 CALIBRATION 0000

Experiments 00000 Remarks 00

- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):
 - Propensity to consume out of wealth
 - Loan repayment rate
 - Capital depreciation rate
 - Actual reserve requirement ratio
 - Average tax rate
 - Autonomous portfolio coefficients

Accounting 000 Equations 00000000000000 CALIBRATION 0000

Experiments 00000 Remarks 00

- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):
 - Propensity to consume out of wealth
 - Loan repayment rate
 - Capital depreciation rate
 - Actual reserve requirement ratio
 - Average tax rate
 - Autonomous portfolio coefficients
- Remaining parameters and exogenous variables sourced from Canelli et al. (2022).

Accounting 000 Equations 00000000000000 CALIBRATION 0000

Experiments 00000 Remarks 00

- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):
 - Propensity to consume out of wealth
 - Loan repayment rate
 - Capital depreciation rate
 - Actual reserve requirement ratio
 - Average tax rate
 - Autonomous portfolio coefficients
- Remaining parameters and exogenous variables sourced from Canelli et al. (2022).
- Unit prices normalised to one in 2021.

Accounting

Equations 0000000000000 CALIBRATION 0000

EXPERIMENTS 00000

Remarks 00

CROSS-SECTOR TRANSACTIONS IN 2021

	Bank profit	
Banks: outflow	Interests on dapasites	
	Firms profit	Rentiers: inflow
	Change in loans Interests on domestic sec.s	
	Wages	Workers: inflow
Firms: outflow	Import	Central bank: inflow
	Investment	Foreign: inflow
	Deprec. / Amort. Change in fash and reserves	
	Consumption	
Workers: outflow	Interests on Joans Interests on Potresit sec.s	Firms: inflow
Rentiers: outflow	Interests on T-bills Government spending	
Government: outflow	Export	Banks: inflow
Foreign: outflow Central bank: outflow	Changes in T-bills Changes in T-bills Servino du a factorie	Government: inflow

Accounting

EQUATIONS 000000000000000000 CALIBRATION 000●

EXPERIMENTS 00000 Remarks 00

Cross-industry interdependencies in 2021

EXPERIMENTS 00000 Remarks 00

BASELINE ASSUMPTIONS AND SHOCKS

- Steady state in 2021: DEF = 0, CAB = 0, C = YD.

AN E-IO-SFC MODEL FOR ITALY
CALIBRATION 0000

EXPERIMENTS •0000 Remarks 00

- Steady state in 2021: DEF = 0, CAB = 0, C = YD.
- Prices are unity in 2021, so that value coefficients equal technical coefficients.

- Steady state in 2021: DEF = 0, CAB = 0, C = YD.
- Prices are unity in 2021, so that value coefficients equal technical coefficients.
- One industry \rightarrow one technique \rightarrow one product.

- Steady state in 2021: DEF = 0, CAB = 0, C = YD.
- Prices are unity in 2021, so that value coefficients equal technical coefficients.
- One industry \rightarrow one technique \rightarrow one product.
- Alternative scenario: higher share of renewables + greener production following government spending (100 bn euros).

- Steady state in 2021: DEF = 0, CAB = 0, C = YD.
- Prices are unity in 2021, so that value coefficients equal technical coefficients.
- One industry \rightarrow one technique \rightarrow one product.
- Alternative scenario: higher share of renewables + greener production following government spending (100 bn euros).
- Targeted industries: A (agriculture), D (electricity, gas, etc.), E (water, waste, etc.), F (construction), H (transportation).

- Steady state in 2021: DEF = 0, CAB = 0, C = YD.
- Prices are unity in 2021, so that value coefficients equal technical coefficients.
- One industry \rightarrow one technique \rightarrow one product.
- Alternative scenario: higher share of renewables + greener production following government spending (100 bn euros).
- Targeted industries: A (agriculture), D (electricity, gas, etc.), E (water, waste, etc.), F (construction), H (transportation).
- Sigmoid adjustment of spending (and return to pre-shock level).

ACCOUNTING 000 Equations 00000000000000 CALIBRATION 0000 EXPERIMENTS 00000 Remarks 00

Selected variables after the shock

▲ロト ▲部 ト ▲ 三 ト ▲ 三 き … のへで

ACCOUNTING

CALIBRATION 0000

Experiments

Remarks 00

Selected variables after the shock

ACCOUNTING

CALIBRATION 0000

EXPERIMENTS 00000 Remarks 00

Selected variables after the shock

Gross output by industry

Employment by industry

GHG emiss. by industry

< □ > < 部 > < 三 > < 三 > < 三 > < ○ < ○ <

Accounting

CALIBRATION 0000

EXPERIMENTS

Remarks 00

۵

 \equiv \rightarrow

◆ □ ▶ ◆ 白♥ ▶

nac

Selected variables after the shock

AN E-IO-SFC MODEL FOR ITALY

Accounting

EQUATIONS 00000000000000000 CALIBRATION

XPERIMENTS

Remarks

FINAL REMARKS

- The new calibration method has drawbacks, but it is simpler, quicker, and more reliable.

EQUATIONS 00000000000000 CALIBRATION 0000

XPERIMENTS

Remarks

FINAL REMARKS

- The new calibration method has drawbacks, but it is simpler, quicker, and more reliable.
- The model works smoothly and is watertight. However, IO relations must be carefully double-checked.

EQUATIONS 0000000000000 CALIBRATION

XPERIMENTS

Remarks

FINAL REMARKS

- The new calibration method has drawbacks, but it is simpler, quicker, and more reliable.
- The model works smoothly and is watertight. However, IO relations must be carefully double-checked.
- Key message from early experiments: the transition takes time (rebound) and is likely to have uneven effects on different social groups.

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ ● ● ●

Accounting

EQUATIONS 000000000000000000 CALIBRATION

Experiments 00000 Remarks ○●

Thank you

Download this presentation from: www.marcopassarella.it

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ ● ● ● ●

AN E-IO-SFC MODEL FOR ITALY