Circular economy innovations in an input-output stock-flow consistent dynamic model

Marco Veronese Passarella

"Link Campus" University of Rome & University of Leeds

26th FMM Conference

October 21st, 2022

Download slides and code from MARXIANOMICS:

https://www.marcopassarella.it/en/

 $\boldsymbol{\mathsf{-}}$ Increasing interest in economy-ecosystem nexus and CE

- Increasing interest in economy-ecosystem nexus and CE
- Excluding GE models, there are two main tools:

- Increasing interest in economy-ecosystem nexus and CE
- Excluding GE models, there are two main tools:
 - IO models (pros: cross-industry interdependency; cons: static, finance)

- Increasing interest in economy-ecosystem nexus and CE
- Excluding GE models, there are two main tools:
 - IO models (pros: cross-industry interdependency; cons: static, finance)
 - SFC models (pros: dynamic, finance; cons: homogeneous output)

- Increasing interest in economy-ecosystem nexus and CE
- Excluding GE models, there are two main tools:
 - IO models (pros: cross-industry interdependency; cons: static, finance)
 - SFC models (pros: dynamic, finance; cons: homogeneous output)
- The aim is two-fold:

- Increasing interest in economy-ecosystem nexus and CE
- Excluding GE models, there are two main tools:
 - IO models (pros: cross-industry interdependency; cons: static, finance)
 - SFC models (pros: dynamic, finance; cons: homogeneous output)
- The aim is two-fold:
 - 1) To show how an IO-SFC model can be developed from scratch

- Increasing interest in economy-ecosystem nexus and CE
- Excluding GE models, there are two main tools:
 - IO models (pros: cross-industry interdependency; cons: static, finance)
 - SFC models (pros: dynamic, finance; cons: homogeneous output)
- The aim is two-fold:
 - 1) To show how an IO-SFC model can be developed from scratch
 - 2) To assess the impact of a CE innovation on the economy, the society and the ecosystem

a) SFC frame taken from standard SFC models (Godley/Lavoie 2007):

- a) SFC frame taken from standard SFC models (Godley/Lavoie 2007):
 - Six sectors: households, production firms, government, commercial banks, central bank, foreign

- a) SFC frame taken from standard SFC models (Godley/Lavoie 2007):
 - Six sectors: households, production firms, government, commercial banks, central bank, foreign
 - o Three assets: cash, bank deposits, and government bills

- a) SFC frame taken from standard SFC models (Godley/Lavoie 2007):
 - Six sectors: households, production firms, government, commercial banks, central bank, foreign
 - o Three assets: cash, bank deposits, and government bills
 - Only loans to firms (no personal loans)

- a) SFC frame taken from standard SFC models (Godley/Lavoie 2007):
 - Six sectors: households, production firms, government, commercial banks, central bank, foreign
 - o Three assets: cash, bank deposits, and government bills
 - Only loans to firms (no personal loans)
- b) Fixed capital, but no inventories

- a) SFC frame taken from standard SFC models (Godley/Lavoie 2007):
 - Six sectors: households, production firms, government, commercial banks, central bank, foreign
 - Three assets: cash, bank deposits, and government bills
 - Only loans to firms (no personal loans)
- b) Fixed capital, but no inventories
- c) Simple IO structure: 3 industries (manufacturing, agriculture, services) + waste recycling

- a) SFC frame taken from standard SFC models (Godley/Lavoie 2007):
 - Six sectors: households, production firms, government, commercial banks, central bank, foreign
 - o Three assets: cash, bank deposits, and government bills
 - Only loans to firms (no personal loans)
- b) Fixed capital, but no inventories
- c) Simple IO structure: 3 industries (manufacturing, agriculture, services) + waste recycling
- d) Identification: reasonable values / neutrality

Method

- a) SFC frame taken from standard SFC models (Godley/Lavoie 2007):
 - Six sectors: households, production firms, government, commercial banks, central bank, foreign
 - o Three assets: cash, bank deposits, and government bills
 - Only loans to firms (no personal loans)
- b) Fixed capital, but no inventories
- Simple IO structure: 3 industries (manufacturing, agriculture, services) + waste recycling
- d) Identification: reasonable values / neutrality
- e) Solution: numerical simulation (R code)

Nominal value of assets and liabilities

Table 1: Balance sheet in period t = 20 (baseline scenario)

	Households	Firms	Government	Banks	СВ	Foreign	Total	
Money	46.43	0	0	0	-46.43	0	0	
Advances	0	0	0	0	0	0	0	
Deposits	272.29	0	0	-272.29	0	0	0	
Loans	0	-36.62	0	36.62	0	0	0	
Bills	35.41	0	-367.09	235.67	46.43	49.58	0	
Capital stock	0	36.62	0	0	0	0	36.62	
Net financial wealth	-354.13	0	367.09	0	0	-49.58	-36.62	
Total	0	0	0	0	0	0	0	

Money transactions and changes in stocks

TABLE 2: Transactions-flow matrix in period t = 20 (baseline scenario)

	Households			Government	Banks	CB	Foreign	Tot
		Current	Capital				_	
Consumption	-522.91	522.91	0	0	0	0	0	0
Investment	0	11.55	-11.55	0	0	0	0	0
Government spending	0	180	0	-180	0	0	0	0
Export	0	73.29	0	0	0	0	-73.29	0
Import	0	-78.77	0	0	0	0	78.77	0
[Value added]	0	[708.97]	0	0	0	0	0	0
Wage bill	322.26	-322.26	0	0	0	0	0	0
Corporate profit	383.80	-383.8	0	0	0	0	0	0
Amortization	0	-1.83	1.83	0	0	0	0	0
Bank profit	4.67	0	0	0	-4.67	0	0	0
Tax revenue	-142.97	0	0	142.97	0	0	0	0
Interests on deposits	4.67	0	0	0	-4.67	0	0	0
Interests on loans	0	-1.08	0	0	1.08	0	0	0
Interests on bills	1.21	0	0	-11.18	8.27	0	1.70	0
Change in money stock	-6.93	0	0	0	0	6.93	0	0
Change in advances	0	0	0	0	0	0	0	0
Change in deposits	-38.73	0	0	0	38.73	0	0	0
Change in Ioans	0	0	9.71	0	-9.71	0	0	0
Change in bills	-5.07	0	0	48.20	-29.02	-6.93	-7.18	0
Total	0	0	0	0	0	0	0	0

SELECTED EQUATIONS: HOUSEHOLDS

- Total "real" consumption is:

$$c = \alpha_1 \cdot \frac{YD^w}{E(p_A)} + \alpha_2 \cdot \frac{YD^c}{E(p_A)} + \alpha_3 \cdot \frac{V_{-1}}{p_{A,-1}}$$
(1)

SELECTED EQUATIONS: HOUSEHOLDS

- Total "real" consumption is:

$$c = \alpha_1 \cdot \frac{YD^w}{E(p_A)} + \alpha_2 \cdot \frac{YD^c}{E(p_A)} + \alpha_3 \cdot \frac{V_{-1}}{p_{A,-1}}$$
(1)

- Households' total disposable income:

$$YD = w \cdot N + F_f + F_b + r_{m,-1} \cdot M_{h,-1} + r_{b,-1} \cdot B_{h,-1} - T$$
 (2)

SELECTED EQUATIONS: HOUSEHOLDS

- Total "real" consumption is:

$$c = \alpha_1 \cdot \frac{YD^w}{E(p_A)} + \alpha_2 \cdot \frac{YD^c}{E(p_A)} + \alpha_3 \cdot \frac{V_{-1}}{p_{A,-1}}$$
(1)

- Households' total disposable income:

$$YD = w \cdot N + F_f + F_b + r_{m,-1} \cdot M_{h,-1} + r_{b,-1} \cdot B_{h,-1} - T$$
 (2)

Disposable labour income in each industry j is:

$$YD_j^w = w \cdot N_j \cdot (1 - \theta), \quad with : j = 1, 2$$
(3)

SELECTED EQUATIONS: FIRMS (CURRENT)

- Let us consider a 3×3 production. The final demand vector is:

$$\mathbf{d} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} \cdot c + \begin{pmatrix} \iota_1 \\ \iota_2 \\ \iota_3 \end{pmatrix} \cdot i_d + \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{pmatrix} \cdot gov + \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix} \cdot exp \quad (4)$$

SELECTED EQUATIONS: FIRMS (CURRENT)

- Let us consider a 3×3 production. The final demand vector is:

$$\mathbf{d} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} \cdot c + \begin{pmatrix} \iota_1 \\ \iota_2 \\ \iota_3 \end{pmatrix} \cdot i_d + \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{pmatrix} \cdot gov + \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix} \cdot exp \quad (4)$$

- The gross output vector is:

$$\mathbf{x} = \mathbf{A} \cdot \mathbf{x} + \mathbf{d} = (\mathbf{I} - \mathbf{A})^{-1} \cdot \mathbf{d}, \text{ with } : \mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 (5)

SELECTED EQUATIONS: FIRMS (CURRENT)

- Let us consider a 3×3 production. The final demand vector is:

$$\mathbf{d} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} \cdot c + \begin{pmatrix} \iota_1 \\ \iota_2 \\ \iota_3 \end{pmatrix} \cdot i_d + \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{pmatrix} \cdot gov + \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix} \cdot exp \quad (4)$$

- The gross output vector is:

$$\mathbf{x} = \mathbf{A} \cdot \mathbf{x} + \mathbf{d} = (\mathbf{I} - \mathbf{A})^{-1} \cdot \mathbf{d}, \text{ with } : \mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 (5)

The net domestic income of home country is:

$$Y_n = \mathbf{p}^T \cdot \mathbf{d} - \mathbf{p}^T \cdot (\mathbf{m} \odot \mathbf{d})$$
 (6)

SELECTED EQUATIONS: FIRMS (CAPITAL)

- The target stock of fixed capital depends on industry-specific target capital to output ratios:

$$k^* = \frac{\mathbf{p}_{-1}^T \cdot (\mathbf{h} \odot \mathbf{x}_{-1})}{p_{l,-1}}$$

(7)

SELECTED EQUATIONS: FIRMS (CAPITAL)

- The target stock of fixed capital depends on industry-specific target capital to output ratios:

$$k^* = \frac{\mathbf{p}_{-1}^T \cdot (\mathbf{h} \odot \mathbf{x}_{-1})}{p_{l,-1}} \tag{7}$$

The real gross investment is:

$$i_d = \gamma \cdot (k^* - k_{-1}) + \delta \cdot k \tag{8}$$

SELECTED EQUATIONS: FIRMS (CAPITAL)

- The target stock of fixed capital depends on industry-specific target capital to output ratios:

$$k^* = \frac{\mathbf{p}_{-1}^T \cdot (\mathbf{h} \odot \mathbf{x}_{-1})}{p_{l,-1}} \tag{7}$$

The real gross investment is:

$$i_d = \gamma \cdot (k^* - k_{-1}) + \delta \cdot k \tag{8}$$

- The end-of-period stock of bank loans is defined residually:

$$L_f = L_{f,-1} + i_d \cdot p_1 - AF$$
, with: $AF = \delta \cdot k \cdot p_1$ (9)

- The supply of bank loans is:

$$L_s = L_{s,-1} + \Delta L_f$$

- The supply of bank loans is:

$$L_s = L_{s,-1} + \Delta L_f$$

- The supply of bank deposits is:

$$M_s = M_h \tag{11}$$

(10)

- The supply of bank loans is:

$$L_s = L_{s,-1} + \Delta L_f$$

- The supply of bank deposits is:

$$M_s = M_h \tag{11}$$

- Bank holdings of government bills are:

if
$$M_s \ge L_s$$
 then $B_b = M_s - L_s$ else $B_b = 0$ (12)

(10)

- The supply of bank loans is:

$$L_s = L_{s,-1} + \Delta L_f$$

(10)

- The supply of bank deposits is:

$$M_s = M_h \tag{11}$$

- Bank holdings of government bills are:

if
$$M_s \ge L_s$$
 then $B_b = M_s - L_s$ else $B_b = 0$ (12)

- whereas advances obtained from the CB are:

if
$$M_s < L_s$$
 then $A_d = L_s - M_s$ else $A_d = 0$

(13)

←□ → ←□ → ←□ → □ → ○ へ ○ ○

SELECTED EQUATIONS: GOVERNMENT AND CB

- The supply of government bills is:

$$B_{s} = B_{s,-1} + g \cdot p_{G} - T + r_{b} \cdot (B_{h} + B_{b} + B_{fo})$$
 (14)

SELECTED EQUATIONS: GOVERNMENT AND CB

- The supply of government bills is:

$$B_{s} = B_{s,-1} + g \cdot p_{G} - T + r_{b} \cdot (B_{h} + B_{b} + B_{fo})$$
 (14)

 At the end of each period, the central bank holds the residual amount of bills:

$$B_{cb} = B_s - B_h - B_b - B_f o \tag{15}$$

SELECTED EQUATIONS: GOVERNMENT AND CB

- The supply of government bills is:

$$B_{s} = B_{s,-1} + g \cdot p_{G} - T + r_{b} \cdot (B_{h} + B_{b} + B_{fo})$$
 (14)

 At the end of each period, the central bank holds the residual amount of bills:

$$B_{cb} = B_s - B_h - B_b - B_f o \tag{15}$$

- Therefore, cash supply is:

$$H_s = H_{s,-1} + (B_{cb} - B_{cb,-1}) + (A_s - A_{s,-1})$$
 (16)

SELECTED EQUATIONS: FOREIGN MARKET

- Real export follows a stock-flow norm:

$$exp = \alpha_4 \cdot \frac{YD_{fo}}{E(p_{fo})} + \alpha_5 \cdot \frac{V_{fo,-1}}{p_{fo,-1}}$$
(17)

SELECTED EQUATIONS: FOREIGN MARKET

- Real export follows a stock-flow norm:

$$exp = \alpha_4 \cdot \frac{YD_{fo}}{E(p_{fo})} + \alpha_5 \cdot \frac{V_{fo,-1}}{p_{fo,-1}}$$

$$(17)$$

- The final demand for imported goods and services is:

$$\mathsf{imp} = \mathsf{m} \odot \mathsf{d} \tag{18}$$

SELECTED EQUATIONS: FOREIGN MARKET

- Real export follows a stock-flow norm:

$$exp = \alpha_4 \cdot \frac{YD_{fo}}{E(p_{fo})} + \alpha_5 \cdot \frac{V_{fo,-1}}{p_{fo,-1}}$$
(17)

- The final demand for imported goods and services is:

$$imp = m \odot d \tag{18}$$

The foreign stock of net wealth is:

$$V_{fo} = V_{fo,-1} + YD_{fo} - p_{fo} \cdot exp \tag{19}$$

SELECTED EQUATIONS: PRICES

- If firms use a mark-up rule, the unit price of production vector is:

$$\mathbf{p}^* = w \cdot \mathbf{I} + \mathbf{p}^* \cdot \mathbf{A} \odot \mathbf{m}^*$$

(20)

SELECTED EQUATIONS: PRICES

- If firms use a mark-up rule, the unit price of production vector is:

$$\mathbf{p}^* = w \cdot \mathbf{I} + \mathbf{p}^* \cdot \mathbf{A} \odot \mathbf{m}^*$$

- However, actual prices only adjust gradually:

$$\mathbf{p} = \Gamma \odot \mathbf{p}_{-1} + \left[\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \Gamma \right] \odot \mathbf{p}^* \tag{21}$$

(20)

SELECTED EQUATIONS: PRICES

- If firms use a mark-up rule, the unit price of production vector is:

$$\mathbf{p}^* = w \cdot \mathbf{I} + \mathbf{p}^* \cdot \mathbf{A} \odot \mathbf{m}^*$$

(20)

- However, actual prices only adjust gradually:

$$\mathbf{p} = \Gamma \odot \mathbf{p}_{-1} + \left[\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \Gamma \right] \odot \mathbf{p}^* \tag{21}$$

- The average price of consumption is:

$$p_{\mathcal{A}} = \mathbf{p}^{T} \cdot \beta, \quad with : \beta = \begin{pmatrix} \beta_{1} \\ \beta_{2} \\ \beta_{3} \end{pmatrix}$$
 (22)

- Households' demand for bills is:

$$\frac{B_h}{V} = \lambda_0 - \lambda_1 \cdot r_m + \lambda_2 \cdot r_b - \lambda_3 \cdot \frac{YD}{V}$$
 (23)

- Households' demand for bills is:

$$\frac{B_h}{V} = \lambda_0 - \lambda_1 \cdot r_m + \lambda_2 \cdot r_b - \lambda_3 \cdot \frac{YD}{V}$$
 (23)

- Households' demand for cash is:

$$H_h = \lambda_c \cdot c_{-1} \cdot p_{A,-1} \tag{24}$$

- Households' demand for bills is:

$$\frac{B_h}{V} = \lambda_0 - \lambda_1 \cdot r_m + \lambda_2 \cdot r_b - \lambda_3 \cdot \frac{YD}{V}$$
 (23)

- Households' demand for cash is:

$$H_h = \lambda_c \cdot c_{-1} \cdot p_{A,-1} \tag{24}$$

- Households' holdings of bank deposits are:

$$M_h = V - B_h - H_h \tag{25}$$

- Households' demand for bills is:

$$\frac{B_h}{V} = \lambda_0 - \lambda_1 \cdot r_m + \lambda_2 \cdot r_b - \lambda_3 \cdot \frac{YD}{V}$$
 (23)

- Households' demand for cash is:

$$H_h = \lambda_c \cdot c_{-1} \cdot p_{A,-1} \tag{24}$$

- Households' holdings of bank deposits are:

$$M_h = V - B_h - H_h \tag{25}$$

The redundant equation is:

$$H_h = H_c$$

Figure 1. Sankey diagram of TFM (in t = 20)

Figure 2. Cross-industry physical flows (in t = 205)

FIGURE 3. MODEL DYNAMICS: BASELINE

INPUT-OUTPUT TABLE

Table 3: Input-output matrix in period t=20 (baseline scenario)

	Manuf.	Agric.	Serv.	Recyc.	Total	Fin. dem.	Tot. output
Manufacturing (production)	67.67	67.67	67.67	0	203.02	248.14	451.16
Agriculture (production)	67.67	67.67	67.67	0	203.02	248.14	451.16
Services (provision)	67.67	67.67	67.67	0	203.02	248.14	451.16
Recycling (production)	0	0	0	0	0	0	0
Value added	236.32	236.32	236.32	0	708.97		
~ Disposable income	191.22	191.22	191.22	0	573.65		
~ Tax revenue	47.66	47.66	47.66	0	142.97		
~ Interest payments (-)	-2.55	-2.55	-2.55	0	-7.65		
Import (production)	11.82	11.82	11.82	0	35.45	-35.45	
Total output	451.16	451.16	451.16	0	1353.49	708.97	1353.49

EXTEDED INPUT-OUTPUT TABLE

Table 4: Extended IO matrix in period t = 20 (baseline scenario)

	Manufacturing	Agriculture	Services	Recycling	Total
Disposable labour income	85.94	85.94	85.94	0	257.81
Disposable capital income	105.28	105.28	105.28	0	315.84
Functional income inequality	0.18	0.18	0.18	0	0.18
Total employment	537.10	537.10	537.10	0	1611.30
~ Male employment	268.55	268.55	268.55	0	805.65
~ Female employment	268.55	268.55	268.55	0	805.65
Share of female employment	0.50	0.50	0.50	0	0.50
Waste production	220.97	220.97	220.97	0	662.91
Annual emissions of CO2	21.05	21.05	21.05	0	63.16

THE CIRCULAR ECONOMY (CE)

- CE = policies that aim at reusing, repairing, sharing, and recycling products and resources to create a closed-loop system, thus minimising waste, pollution, and CO_2 emissions

THE CIRCULAR ECONOMY (CE)

- CE = policies that aim at reusing, repairing, sharing, and recycling products and resources to create a closed-loop system, thus minimising waste, pollution, and CO_2 emissions
- Consider a 4-industry economy: 3 goods + waste. If waste is not recycled, the matrix of technical coefficients is:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & a_{23} & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

THE CIRCULAR ECONOMY (CE)

- CE = policies that aim at reusing, repairing, sharing, and recycling products and resources to create a closed-loop system, thus minimising waste, pollution, and CO_2 emissions
- Consider a 4-industry economy: 3 goods + waste. If waste is not recycled, the matrix of technical coefficients is:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & a_{23} & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

- A CE innovation implies a change in technical coefficients...

- The new matrix will be:

$$\mathbf{A'} = \begin{pmatrix} a'_{11} \leq a_{11} & a'_{12} \leq a_{12} & a'_{13} \leq a_{13} & a'_{14} \geq 0 \\ a'_{21} \leq a_{21} & a'_{22} \leq a_{22} & a'_{23} \leq a_{23} & a'_{24} \geq 0 \\ a'_{31} \leq a_{31} & a'_{32} \leq a_{32} & a'_{33} \leq a_{33} & a'_{34} \geq 0 \\ a'_{41} \geq 0 & a'_{42} \geq 0 & a'_{43} \geq 0 & 0 \end{pmatrix}$$

- The new matrix will be:

$$\mathbf{A'} = \begin{pmatrix} a'_{11} \le a_{11} & a'_{12} \le a_{12} & a'_{13} \le a_{13} & a'_{14} \ge 0 \\ a'_{21} \le a_{21} & a'_{22} \le a_{22} & a'_{23} \le a_{23} & a'_{24} \ge 0 \\ a'_{31} \le a_{31} & a'_{32} \le a_{32} & a'_{33} \le a_{33} & a'_{34} \ge 0 \\ a'_{41} \ge 0 & a'_{42} \ge 0 & a'_{43} \ge 0 & 0 \end{pmatrix}$$

Fall in coefficients defining the quantities of manuf. and agric.
 products and services used as inputs (•)

- The new matrix will be:

$$\mathbf{A'} = \begin{pmatrix} a'_{11} \leq a_{11} & a'_{12} \leq a_{12} & a'_{13} \leq a_{13} & a'_{14} \geq 0 \\ a'_{21} \leq a_{21} & a'_{22} \leq a_{22} & a'_{23} \leq a_{23} & a'_{24} \geq 0 \\ a'_{31} \leq a_{31} & a'_{32} \leq a_{32} & a'_{33} \leq a_{33} & a'_{34} \geq 0 \\ a'_{41} \geq 0 & a'_{42} \geq 0 & a'_{43} \geq 0 & 0 \end{pmatrix}$$

- Fall in coefficients defining the quantities of manuf. and agric. products and services used as inputs (•)
- Waste now enters the production process (•)

- The new matrix will be:

$$\mathbf{A'} = \begin{pmatrix} a'_{11} \leq a_{11} & a'_{12} \leq a_{12} & a'_{13} \leq a_{13} & a'_{14} \geq 0 \\ a'_{21} \leq a_{21} & a'_{22} \leq a_{22} & a'_{23} \leq a_{23} & a'_{24} \geq 0 \\ a'_{31} \leq a_{31} & a'_{32} \leq a_{32} & a'_{33} \leq a_{33} & a'_{34} \geq 0 \\ a'_{41} \geq 0 & a'_{42} \geq 0 & a'_{43} \geq 0 & 0 \end{pmatrix}$$

- Fall in coefficients defining the quantities of manuf. and agric. products and services used as inputs (•)
- Waste now enters the production process (•)
- Manuf. and agric. products and services are used as inputs in waste industry (●)

THE ROLE OF THE GOVERNMENT SECTOR

- The average speed of convergence of technical coefficients to their target values is defined as a linear, positive function of government expenditures:

$$a_{ij} = a_{ij,-1} + \gamma_A \cdot (a'_{ij,-1} - a_{ij,-1})$$
 (26)

THE ROLE OF THE GOVERNMENT SECTOR

- The average speed of convergence of technical coefficients to their target values is defined as a linear, positive function of government expenditures:

$$a_{ij} = a_{ij,-1} + \gamma_A \cdot (a'_{ij,-1} - a_{ij,-1})$$
 (26)

- where γ_A is defined as:

$$\gamma_A = \gamma_A^0 + \Gamma_A^T \cdot \sigma \cdot gov_{-1} \tag{27}$$

WASTE AND EMISSIONS

- The quantity of waste generated by each (domestic) industry is:

$$WA_{j} = WA_{j,-1} + (x_{j} - x_{j,fo}) \cdot (\zeta_{j} - a_{j,4})$$
 (28)

Waste and emissions

- The quantity of waste generated by each (domestic) industry is:

$$WA_j = WA_{j,-1} + (x_j - x_{j,fo}) \cdot (\zeta_j - a_{j,4})$$
 (28)

- Emissions generated by each (domestic) industry are:

$$EM_{j} = (x_{j} - x_{j,fo}) \cdot \varepsilon_{j} \cdot \beta_{e}$$
 (29)

Waste and emissions

- The quantity of waste generated by each (domestic) industry is:

$$WA_j = WA_{j,-1} + (x_j - x_{j,fo}) \cdot (\zeta_j - a_{j,4})$$
 (28)

- Emissions generated by each (domestic) industry are:

$$EM_{j} = (x_{j} - x_{j,fo}) \cdot \varepsilon_{j} \cdot \beta_{e}$$
 (29)

where $\varepsilon_j = Ej_j/x_j =$ industry-specific energy intensity coefficient, and $\beta_e = Gt/Ej =$ common CO_2 intensity coefficient.

Waste and emissions

- The quantity of waste generated by each (domestic) industry is:

$$WA_j = WA_{j,-1} + (x_j - x_{j,fo}) \cdot (\zeta_j - a_{j,4})$$
 (28)

- Emissions generated by each (domestic) industry are:

$$EM_{j} = (x_{j} - x_{j,fo}) \cdot \varepsilon_{j} \cdot \beta_{e}$$
 (29)

where $\varepsilon_j = Ej_j/x_j =$ industry-specific energy intensity coefficient, and $\beta_e = Gt/Ej =$ common CO_2 intensity coefficient.

 Atmospheric CO₂ concentration is then calculated using carbon cycle equations.

FIGURE 4. SELECTED VARIABLES AFTER CE INNOVATION

FIGURE 5. INCOME DISTRIBUTION AND GENDER SEGREGATION

FIGURE 6. GENDER SEGREGATION OVER TIME

FIGURE 7. THE FOREIGN SECTOR

FIGURE 8. PUBLIC FINANCES

 Simplified though it is, this model provides a benchmark for more sophisticated IO-SFC models

- Simplified though it is, this model provides a benchmark for more sophisticated IO-SFC models
- Next steps:

- Simplified though it is, this model provides a benchmark for more sophisticated IO-SFC models
- Next steps:
 - a) Improve investment function

- Simplified though it is, this model provides a benchmark for more sophisticated IO-SFC models
- Next steps:
 - a) Improve investment function
 - b) Turn into 2- or 3-area model

- Simplified though it is, this model provides a benchmark for more sophisticated IO-SFC models
- Next steps:
 - a) Improve investment function
 - b) Turn into 2- or 3-area model
 - c) Endogenize and improve gender divide

- Simplified though it is, this model provides a benchmark for more sophisticated IO-SFC models
- Next steps:
 - a) Improve investment function
 - b) Turn into 2- or 3-area model
 - c) Endogenize and improve gender divide
 - d) Test on real data / estimate coefficients

- Simplified though it is, this model provides a benchmark for more sophisticated IO-SFC models
- Next steps:
 - a) Improve investment function
 - b) Turn into 2- or 3-area model
 - c) Endogenize and improve gender divide
 - d) Test on real data / estimate coefficients
 - e) Improve CE experiments

- Simplified though it is, this model provides a benchmark for more sophisticated IO-SFC models
- Next steps:
 - a) Improve investment function
 - b) Turn into 2- or 3-area model
 - c) Endogenize and improve gender divide
 - d) Test on real data / estimate coefficients
 - e) Improve CE experiments
 - f) Improve solver / perform stability analysis

Thank you

Download this presentation from MARXIANOMICS:

https://www.marcopassarella.it/en/

◄□▶ ◄▷▶ ◀글▶ ★필▶ 글 ∽