Circular economy innovations in an input-output stock-flow consistent dynamic model

Marco Veronese Passarella

"Link Campus" University of Rome & University of Leeds

European Commission Grant, Project 101003491: "A Just Transition to the Circular Economy" (JUST2CE)

November 24th, 2022

Download this presentation from:

https://www.marcopassarella.it/wp-content/uploads/Presentation_Pisa_2022.pdf

(Link Campus / Leeds University)

IO-SFC Model

NOVEMBER 24TH, 2022

イロト イポト イヨト イヨト

– JUST2CE = A Just Transition to the Circular Economy

- JUST2CE = A Just Transition to the Circular Economy
- It is a EU-funded project proposing an alternative way to looking at CE

- JUST2CE = A Just Transition to the Circular Economy
- It is a EU-funded project proposing an alternative way to looking at CE
- Most projects have focused on how to produce circularity. JUSTC2CE focuses on what (democracy, participation, gender, global justice)

- JUST2CE = A Just Transition to the Circular Economy
- It is a EU-funded project proposing an alternative way to looking at CE
- Most projects have focused on how to produce circularity. JUSTC2CE focuses on what (democracy, participation, gender, global justice)
- Two main milestones / deliverables linked with WP5:

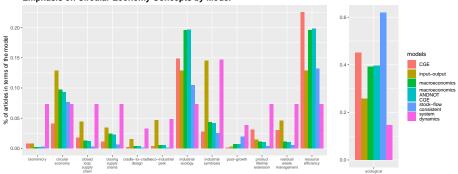
- JUST2CE = A Just Transition to the Circular Economy
- It is a EU-funded project proposing an alternative way to looking at CE
- Most projects have focused on how to produce circularity. JUSTC2CE focuses on what (democracy, participation, gender, global justice)
- Two main milestones / deliverables linked with WP5:
 - $\circ\,$ a systematic review of current literature on macroeconomic models for assessing the transition towards a CE

- JUST2CE = A Just Transition to the Circular Economy
- It is a EU-funded project proposing an alternative way to looking at CE
- Most projects have focused on how to produce circularity. JUSTC2CE focuses on what (democracy, participation, gender, global justice)
- Two main milestones / deliverables linked with WP5:
 - $\circ\,$ a systematic review of current literature on macroeconomic models for assessing the transition towards a CE
 - a formal model (or set of models) to simulate and compare alternative CE policies and transition scenarios

A B K A B K

- We have analyzed 49,893 papers (see Valles-Codina et al. 2022)

• 3 >


< 17 > <

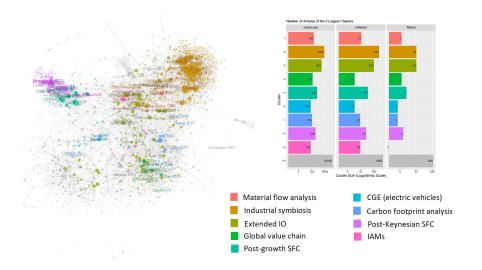
- We have analyzed 49,893 papers (see Valles-Codina et al. 2022)
- Eventually, 405 have been selected

- We have analyzed 49,893 papers (see Valles-Codina et al. 2022)
- Eventually, 405 have been selected
- We have focused on both topics and modeling techniques

- We have analyzed 49,893 papers (see Valles-Codina et al. 2022)
- Eventually, 405 have been selected
- We have focused on both topics and modeling techniques
- We have identified, discussed, and assessed the most popular/promising tools (to model the transition...)

FIGURE A1. CONCEPTS AND MODELS

Emphasis on Circular Economy Concepts by Model


Source: Valles-Codina et al. (2022)

< □ > < □ > < □ > < □ > < □ >

November 24th, 2022

크

FIGURE A2. CITATION NETWORK OF FILTERED ENTRIES

Source: elaboration on Valles-Codina et al. (2022) イロト イヨト イヨト イヨト

November 24th, 2022

크

- Main tools in (theory-to-data) macroeconomics:

< E

- Main tools in (theory-to-data) macroeconomics:
 - 1) DSGE (and growth) models. PROS: mainstream tool, simple story. CONS: too "small", unique optimal equilibrium

- Main tools in (theory-to-data) macroeconomics:
 - 1) DSGE (and growth) models. PROS: mainstream tool, simple story. CONS: too "small", unique optimal equilibrium
 - 2) CGE models (and IAMs). PROS: several variables, cross-industry interdependencies. CONS: unique optimal equilibrium

- Main tools in (theory-to-data) macroeconomics:
 - 1) DSGE (and growth) models. PROS: mainstream tool, simple story. CONS: too "small", unique optimal equilibrium
 - 2) CGE models (and IAMs). PROS: several variables, cross-industry interdependencies. CONS: unique optimal equilibrium
- Is there an alternative? Yes, there are two:

- Main tools in (theory-to-data) macroeconomics:
 - 1) DSGE (and growth) models. PROS: mainstream tool, simple story. CONS: too "small", unique optimal equilibrium
 - 2) CGE models (and IAMs). PROS: several variables, cross-industry interdependencies. CONS: unique optimal equilibrium
- Is there an alternative? Yes, there are two:
 - 1) Leontief IO models. PROS: several variables, cross-industry interdependencies. CONS: static, poor financial side

- Main tools in (theory-to-data) macroeconomics:
 - 1) DSGE (and growth) models. PROS: mainstream tool, simple story. CONS: too "small", unique optimal equilibrium
 - 2) CGE models (and IAMs). PROS: several variables, cross-industry interdependencies. CONS: unique optimal equilibrium
- Is there an alternative? Yes, there are two:
 - 1) Leontief IO models. PROS: several variables, cross-industry interdependencies. CONS: static, poor financial side
 - 2) SFC models. PROS: dynamics, finance. CONS: homogeneous output

A B K A B K

- Main tools in (theory-to-data) macroeconomics:
 - 1) DSGE (and growth) models. PROS: mainstream tool, simple story. CONS: too "small", unique optimal equilibrium
 - 2) CGE models (and IAMs). PROS: several variables, cross-industry interdependencies. CONS: unique optimal equilibrium
- Is there an alternative? Yes, there are two:
 - 1) Leontief IO models. PROS: several variables, cross-industry interdependencies. CONS: static, poor financial side
 - 2) SFC models. PROS: dynamics, finance. CONS: homogeneous output
- In principle, we can disaggregate SFC models by crossbreeding them with IO models... (Hardt and O'Neill 2017)

A (1) > A (2) > A (2) >

- However, just a few papers use IO-SFC models:

→

Image: A match the second s

- However, just a few papers use IO-SFC models:
 - Berg, Hartley and Richters (2015). A stock-flow consistent input-output model with applications to energy price shocks, interest rates, and heat emissions. *New journal of physics*.

- However, just a few papers use IO-SFC models:
 - Berg, Hartley and Richters (2015). A stock-flow consistent input-output model with applications to energy price shocks, interest rates, and heat emissions. *New journal of physics*.
 - Other contributions: Naqvi (2015), Valdecantos and Valentini (2017), Jackson and Jackson (2021), Cordier et al. (2015), Jackson et al. (2014)

- However, just a few papers use IO-SFC models:
 - Berg, Hartley and Richters (2015). A stock-flow consistent input-output model with applications to energy price shocks, interest rates, and heat emissions. *New journal of physics*.
 - Other contributions: Naqvi (2015), Valdecantos and Valentini (2017), Jackson and Jackson (2021), Cordier et al. (2015), Jackson et al. (2014)
- None of them focus on CE

- However, just a few papers use IO-SFC models:
 - Berg, Hartley and Richters (2015). A stock-flow consistent input-output model with applications to energy price shocks, interest rates, and heat emissions. *New journal of physics*.
 - Other contributions: Naqvi (2015), Valdecantos and Valentini (2017), Jackson and Jackson (2021), Cordier et al. (2015), Jackson et al. (2014)
- None of them focus on CE
- Two-fold aim:

- However, just a few papers use IO-SFC models:
 - Berg, Hartley and Richters (2015). A stock-flow consistent input-output model with applications to energy price shocks, interest rates, and heat emissions. *New journal of physics*.
 - Other contributions: Naqvi (2015), Valdecantos and Valentini (2017), Jackson and Jackson (2021), Cordier et al. (2015), Jackson et al. (2014)
- None of them focus on CE
- Two-fold aim:
 - 1) To bridge the gap by developing a benchmark IO-SFC model (and related codes)

A B K A B K

- However, just a few papers use IO-SFC models:

- Berg, Hartley and Richters (2015). A stock-flow consistent input-output model with applications to energy price shocks, interest rates, and heat emissions. *New journal of physics*.
- Other contributions: Naqvi (2015), Valdecantos and Valentini (2017), Jackson and Jackson (2021), Cordier et al. (2015), Jackson et al. (2014)
- None of them focus on CE
- Two-fold aim:
 - 1) To bridge the gap by developing a benchmark IO-SFC model (and related codes)
 - 2) To assess the impact of a simple CE innovation on the economy, the society and the ecosystem

A (B) < (B) < (B) < (B) </p>

a) Macro frame taken from standard SFC models (Godley and Lavoie 2007):

- a) Macro frame taken from standard SFC models (Godley and Lavoie 2007):
 - Six sectors: households, production firms, government, commercial banks, central bank, foreign sector

- a) Macro frame taken from standard SFC models (Godley and Lavoie 2007):
 - Six sectors: households, production firms, government, commercial banks, central bank, foreign sector
 - Three assets: cash, bank deposits, and government bills (+ advances)

- a) Macro frame taken from standard SFC models (Godley and Lavoie 2007):
 - Six sectors: households, production firms, government, commercial banks, central bank, foreign sector
 - Three assets: cash, bank deposits, and government bills (+ advances)
 - Only loans to firms (no personal loans)

- a) Macro frame taken from standard SFC models (Godley and Lavoie 2007):
 - Six sectors: households, production firms, government, commercial banks, central bank, foreign sector
 - Three assets: cash, bank deposits, and government bills (+ advances)
 - Only loans to firms (no personal loans)
 - Fixed capital, but no inventories

- a) Macro frame taken from standard SFC models (Godley and Lavoie 2007):
 - Six sectors: households, production firms, government, commercial banks, central bank, foreign sector
 - Three assets: cash, bank deposits, and government bills (+ advances)
 - Only loans to firms (no personal loans)
 - Fixed capital, but no inventories
- b) Simple IO structure: 3 industries (manufacturing, agriculture, services) + waste recycling

- a) Macro frame taken from standard SFC models (Godley and Lavoie 2007):
 - Six sectors: households, production firms, government, commercial banks, central bank, foreign sector
 - Three assets: cash, bank deposits, and government bills (+ advances)
 - Only loans to firms (no personal loans)
 - Fixed capital, but no inventories
- b) Simple IO structure: 3 industries (manufacturing, agriculture, services) + waste recycling
- c) Identification: literature / reasonable values / neutrality

- a) Macro frame taken from standard SFC models (Godley and Lavoie 2007):
 - Six sectors: households, production firms, government, commercial banks, central bank, foreign sector
 - Three assets: cash, bank deposits, and government bills (+ advances)
 - Only loans to firms (no personal loans)
 - Fixed capital, but no inventories
- b) Simple IO structure: 3 industries (manufacturing, agriculture, services) + waste recycling
- c) Identification: literature / reasonable values / neutrality
- d) Solution: numerical simulations (R code), 250 periods, 100 iterations

向下 イヨト イヨト

ACCOUNTING STRUCTURE

TABLE 1: Balance sheet							
	Households	Firms	Government	Banks	CB	Foreign	Total
Cash	~				~		0
Advances				~	\checkmark		0
Deposits	~			~			0
Loans		\checkmark		~			0
Bills	1		~	~	~	\checkmark	0
Capital stock		~					~
Net financial wealth	\checkmark		~			~	~
Total	0	0	0	0	0	0	0

TABLE 2: Transactions-flow matrix

	Households	Firms		Government	Banks	CB	Foreign	Tot.
		Current	Capital					
Consumption	~	×.						0
Investment		√.	~					0
Government spending		~		\checkmark				0
Export		~					\checkmark	0
Import		~					\checkmark	0
[Value added]		[√]						0
Wage bill	\checkmark	· 🗸 ·						0
Corporate profit	\checkmark	\checkmark						0
Amortization		~	~					0
Bank profit	~				1			Ó
Tax revenue	~			\checkmark				0
Interests on deposits	~				~			0
Interests on loans		~			~			0
Interests on bills	\checkmark			\checkmark	1		\checkmark	Ó
Change in cash	~					~		0
Change in advances					~	~		0
Change in deposits	\checkmark				~			0
Change in loans			1		1			Ó
Change in bills	\checkmark			\checkmark	~	\checkmark	\checkmark	Ó
Total	0	0	0	0	0	0	0	0

	Manuf.	Agric.	Serv.	Recyc.	Total	Fin. dem.	Tot. out
Manufacturing (production)	\checkmark	~	~	~	~	\checkmark	1
Agriculture (production)	\checkmark	~	~	~	~	✓	1
Services (provision)	\checkmark	~	~	~	~	✓	1
Recycling (production)	\checkmark	\checkmark	~	~	~	 ✓ 	1
Value added	\checkmark	~	~	~	~		
~ Disposable income	\checkmark	\checkmark	~	~	~		
~ Tax revenue	\checkmark	\checkmark	~	~	~		
~ Interest payments (-)	~	~	~	~	~		
Import (production)	\checkmark	~	~	~	~	~	
Total output	~	~	~	~	~	\checkmark	

Link Campus / Leeds University)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

SELECTED EQUATIONS: HOUSEHOLDS

- Total "real" consumption is:

$$c = \alpha_1 \cdot \frac{YD^w}{E(p_A)} + \alpha_2 \cdot \frac{YD^c}{E(p_A)} + \alpha_3 \cdot \frac{V_{-1}}{p_{A,-1}}$$

크

・ロト ・日ト ・ヨト ・ヨト

(1)

SELECTED EQUATIONS: HOUSEHOLDS

- Total "real" consumption is:

$$c = \alpha_1 \cdot \frac{YD^w}{E(p_A)} + \alpha_2 \cdot \frac{YD^c}{E(p_A)} + \alpha_3 \cdot \frac{V_{-1}}{p_{A,-1}}$$
(1)

- Households' total disposable income:

$$YD = w \cdot N + F_f + F_b + r_{m,-1} \cdot M_{h,-1} + r_{b,-1} \cdot B_{h,-1} - T$$
(2)

• 3 >

< (17) > <

SELECTED EQUATIONS: HOUSEHOLDS

- Total "real" consumption is:

$$c = \alpha_1 \cdot \frac{YD^w}{E(p_A)} + \alpha_2 \cdot \frac{YD^c}{E(p_A)} + \alpha_3 \cdot \frac{V_{-1}}{p_{A,-1}}$$
(1)

- Households' total disposable income:

$$YD = w \cdot N + F_f + F_b + r_{m,-1} \cdot M_{h,-1} + r_{b,-1} \cdot B_{h,-1} - T$$
(2)

- Disposable labour income in each industry *j* is:

$$YD_j^w = w \cdot N_j \cdot (1 - \theta), \quad \text{with} : j = 1, 2, 3 \tag{3}$$

SELECTED EQUATIONS: FIRMS (CURRENT)

- Let us consider a 3×3 production. The final demand vector is:

$$\mathbf{d} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} \cdot \mathbf{c} + \begin{pmatrix} \iota_1 \\ \iota_2 \\ \iota_3 \end{pmatrix} \cdot \mathbf{i}_d + \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{pmatrix} \cdot \mathbf{gov} + \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix} \cdot \mathbf{exp}$$
(4)

SELECTED EQUATIONS: FIRMS (CURRENT)

- Let us consider a 3×3 production. The final demand vector is:

$$\mathbf{d} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} \cdot \mathbf{c} + \begin{pmatrix} \iota_1 \\ \iota_2 \\ \iota_3 \end{pmatrix} \cdot \mathbf{i}_d + \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{pmatrix} \cdot \mathbf{gov} + \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix} \cdot \mathbf{exp}$$
(4)

- The gross output vector is:

$$\mathbf{x} = \mathbf{A} \cdot \mathbf{x} + \mathbf{d} = (\mathbf{I} - \mathbf{A})^{-1} \cdot \mathbf{d}, \text{ with } : \mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
(5)

SELECTED EQUATIONS: FIRMS (CURRENT)

- Let us consider a 3×3 production. The final demand vector is:

$$\mathbf{d} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} \cdot \mathbf{c} + \begin{pmatrix} \iota_1 \\ \iota_2 \\ \iota_3 \end{pmatrix} \cdot \mathbf{i}_d + \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{pmatrix} \cdot \mathbf{gov} + \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix} \cdot \mathbf{exp}$$
(4)

- The gross output vector is:

$$\mathbf{x} = \mathbf{A} \cdot \mathbf{x} + \mathbf{d} = (\mathbf{I} - \mathbf{A})^{-1} \cdot \mathbf{d}, \text{ with } : \mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
(5)

- The net domestic income of home country is:

$$Y_n = \mathbf{p}^T \cdot \mathbf{d} - \mathbf{p}^T \cdot (\mathbf{m} \odot \mathbf{d})$$
(6)

A 3 3

Selected equations: consumption composition

- The share of manufacturing products to total consumption is stable:

$$\beta_1 = \bar{\beta}_1 \tag{7}$$

A 3 3

SELECTED EQUATIONS: CONSUMPTION COMPOSITION

- The share of manufacturing products to total consumption is stable:

$$\beta_1 = \bar{\beta}_1 \tag{7}$$

- The share of services to total consumption increases as disposable incomes (expressed in real terms, using the price of services) increase:

$$\beta_3 = \beta_{3,-1} + \beta_{31} \cdot \frac{YD_{-1}^w}{p_{3,-1}} + \beta_{32} \cdot \frac{YD_{-1}^c}{p_{3,-1}}$$
(8)

SELECTED EQUATIONS: CONSUMPTION COMPOSITION

- The share of manufacturing products to total consumption is stable:

$$\beta_1 = \bar{\beta}_1 \tag{7}$$

- The share of services to total consumption increases as disposable incomes (expressed in real terms, using the price of services) increase:

$$\beta_3 = \beta_{3,-1} + \beta_{31} \cdot \frac{YD_{-1}^w}{p_{3,-1}} + \beta_{32} \cdot \frac{YD_{-1}^c}{p_{3,-1}}$$
(8)

- The share of agricultural products is calculated residually, and tends to decline as the economy grows:

$$\beta_2 = 1 - \beta_1 - \beta_3 \tag{9}$$

SELECTED EQUATIONS: FIRMS (CAPITAL)

- The target stock of fixed capital depends on industry-specific target capital to output ratios:

$$k^* = \frac{\mathbf{p}_{-1}^T \cdot (\mathbf{h} \odot \mathbf{x}_{-1})}{p_{l,-1}}$$
(10)

SELECTED EQUATIONS: FIRMS (CAPITAL)

- The target stock of fixed capital depends on industry-specific target capital to output ratios:

$$k^* = \frac{\mathbf{p}_{-1}^T \cdot (\mathbf{h} \odot \mathbf{x}_{-1})}{p_{l,-1}}$$
(10)

The real gross investment is:

$$i_d = \gamma \cdot (k^* - k_{-1}) + \delta \cdot k_{-1} \tag{11}$$

SELECTED EQUATIONS: FIRMS (CAPITAL)

- The target stock of fixed capital depends on industry-specific target capital to output ratios:

$$k^* = \frac{\mathbf{p}_{-1}^T \cdot (\mathbf{h} \odot \mathbf{x}_{-1})}{p_{l,-1}}$$
(10)

The real gross investment is:

$$i_d = \gamma \cdot (k^* - k_{-1}) + \delta \cdot k_{-1} \tag{11}$$

- The end-of-period stock of bank loans is defined residually:

$$L_f = L_{f,-1} + i_d \cdot p_1 - AF, \quad \text{with} : AF = \delta \cdot k_{-1} \cdot p_1 \tag{12}$$

(Link Campus / Leeds University)

November 24th, 2022

A B K A B K

- The supply of bank loans is:

$$L_s = L_{s,-1} + \Delta L_f \tag{13}$$

э

- The supply of bank loans is:

$$L_s = L_{s,-1} + \Delta L_f \tag{13}$$

- The supply of bank deposits is:

$$M_s = M_h \tag{14}$$

э

- The supply of bank loans is:

$$L_s = L_{s,-1} + \Delta L_f \tag{13}$$

- The supply of bank deposits is:

$$M_s = M_h \tag{14}$$

- Bank holdings of government bills are:

if
$$M_s \ge L_s$$
 then $B_b = M_s - L_s$ else $B_b = 0$ (15)

→ ∃ →

- The supply of bank loans is:

$$L_s = L_{s,-1} + \Delta L_f \tag{13}$$

- The supply of bank deposits is:

$$M_s = M_h \tag{14}$$

- Bank holdings of government bills are:

if
$$M_s \ge L_s$$
 then $B_b = M_s - L_s$ else $B_b = 0$ (15)

- whereas advances obtained from the CB are:

if
$$M_s < L_s$$
 then $A_d = L_s - M_s$ else $A_d = 0$ (16)

November 24th, 2022

Selected equations: government and CB

- The supply of government bills is:

$$B_s = B_{s,-1} + gov \cdot p_G - T + r_b \cdot (B_h + B_b + B_{fo})$$

$$(17)$$

э

イロト イポト イヨト イヨト

Selected equations: government and CB

- The supply of government bills is:

$$B_s = B_{s,-1} + gov \cdot p_G - T + r_b \cdot (B_h + B_b + B_{fo})$$

$$(17)$$

- At the end of each period, the central bank holds the residual amount of bills:

$$B_{cb} = B_s - B_h - B_b - B_f o \tag{18}$$

< E

Selected equations: government and CB

- The supply of government bills is:

$$B_s = B_{s,-1} + gov \cdot p_G - T + r_b \cdot (B_h + B_b + B_{fo})$$

$$(17)$$

 At the end of each period, the central bank holds the residual amount of bills:

$$B_{cb} = B_s - B_h - B_b - B_f o \tag{18}$$

- Therefore, cash supply is:

$$H_{s} = H_{s,-1} + (B_{cb} - B_{cb,-1}) + (A_{s} - A_{s,-1})$$
⁽¹⁹⁾

SELECTED EQUATIONS: PRICES

- Firms use a mark-up rule. The unit price of production vector is:

$$\mathbf{p}^* = \mathbf{w} \cdot \mathbf{I} + \mathbf{p}^* \cdot \mathbf{A} \odot \mathbf{m}^*$$
(20)

where: $\mathbf{m}^* = \{1 + \mu_j^*\}$

э

SELECTED EQUATIONS: PRICES

- Firms use a mark-up rule. The unit price of production vector is:

$$\mathbf{p}^* = w \cdot \mathbf{I} + \mathbf{p}^* \cdot \mathbf{A} \odot \mathbf{m}^*$$
(20)

where: $\mathbf{m}^* = \{1 + \mu_j^*\}$

- However, actual prices only adjust gradually:

$$\mathbf{p} = \mathbf{p}_{-1} + \Gamma \odot \left(\mathbf{p}^* - \mathbf{p}_{-1} \right) \tag{21}$$

SELECTED EQUATIONS: PRICES

- Firms use a mark-up rule. The unit price of production vector is:

$$\mathbf{p}^* = w \cdot \mathbf{I} + \mathbf{p}^* \cdot \mathbf{A} \odot \mathbf{m}^*$$
(20)

where: $\mathbf{m}^* = \{1 + \mu_j^*\}$

- However, actual prices only adjust gradually:

$$\mathbf{p} = \mathbf{p}_{-1} + \Gamma \odot \left(\mathbf{p}^* - \mathbf{p}_{-1} \right) \tag{21}$$

- The consumer price index or average price of consumption is:

$$p_A = \mathbf{p}^T \cdot \beta, \quad \text{with} : \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$$
 (22)

(Link Campus / Leeds University)

November 24th, 2022

- Households' demand for bills is:

$$\frac{B_h}{V} = \lambda_0 - \lambda_1 \cdot r_m + \lambda_2 \cdot r_b - \lambda_3 \cdot \frac{YD}{V}$$
(23)

< □ > < □ > < □ > < □ > < □ >

- Households' demand for bills is:

$$\frac{B_h}{V} = \lambda_0 - \lambda_1 \cdot r_m + \lambda_2 \cdot r_b - \lambda_3 \cdot \frac{YD}{V}$$
(23)

- Households' demand for cash is:

$$H_h = \lambda_c \cdot c_{-1} \cdot p_{A,-1} \tag{24}$$

Image: A math a math

→

- Households' demand for bills is:

$$\frac{B_h}{V} = \lambda_0 - \lambda_1 \cdot r_m + \lambda_2 \cdot r_b - \lambda_3 \cdot \frac{YD}{V}$$
(23)

- Households' demand for cash is:

$$H_h = \lambda_c \cdot c_{-1} \cdot p_{A,-1} \tag{24}$$

- Households' holdings of bank deposits are:

$$M_h = V - B_h - H_h \tag{25}$$

November 24th, 2022

- Households' demand for bills is:

$$\frac{B_h}{V} = \lambda_0 - \lambda_1 \cdot r_m + \lambda_2 \cdot r_b - \lambda_3 \cdot \frac{YD}{V}$$
(23)

- Households' demand for cash is:

$$H_h = \lambda_c \cdot c_{-1} \cdot p_{A,-1} \tag{24}$$

- Households' holdings of bank deposits are:

$$M_h = V - B_h - H_h \tag{25}$$

- The redundant equation is:

$$H_h = H_s$$

Selected equations: waste and emissions

- The quantity of waste generated by each (domestic) industry is:

$$WA_{j} = WA_{j,-1} + (x_{j} - x_{j,fo}) \cdot (\zeta_{j} - a_{j,4})$$
 (26)

A 3 3

Selected equations: waste and emissions

- The quantity of waste generated by each (domestic) industry is:

$$WA_{j} = WA_{j,-1} + (x_{j} - x_{j,fo}) \cdot (\zeta_{j} - a_{j,4})$$
 (26)

- *CO*₂ emissions generated by each (domestic) industry are:

$$EM_j = (x_j - x_{j,fo}) \cdot \varepsilon_j \cdot \beta_e \tag{27}$$

Selected equations: waste and emissions

- The quantity of waste generated by each (domestic) industry is:

$$WA_j = WA_{j,-1} + (x_j - x_{j,fo}) \cdot (\zeta_j - a_{j,4})$$
 (26)

- CO₂ emissions generated by each (domestic) industry are:

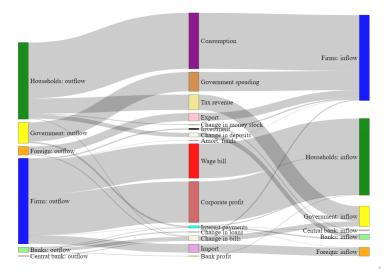
$$EM_j = (x_j - x_{j,fo}) \cdot \varepsilon_j \cdot \beta_e \tag{27}$$

where $\varepsilon_j = E_{jj}/x_j$ = industry-specific energy intensity coefficient, and $\beta_e = Gt/E_j$ = common CO_2 intensity coefficient.

SELECTED EQUATIONS: WASTE AND EMISSIONS

- The quantity of waste generated by each (domestic) industry is:

$$WA_j = WA_{j,-1} + (x_j - x_{j,fo}) \cdot (\zeta_j - a_{j,4})$$
 (26)

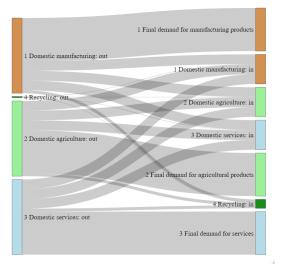

- CO₂ emissions generated by each (domestic) industry are:

$$EM_j = (x_j - x_{j,fo}) \cdot \varepsilon_j \cdot \beta_e \tag{27}$$

where $\varepsilon_j = Ej_j/x_j$ = industry-specific energy intensity coefficient, and $\beta_e = Gt/Ej$ = common CO_2 intensity coefficient.

- Atmospheric *CO*₂ concentration is then calculated using carbon cycle equations.

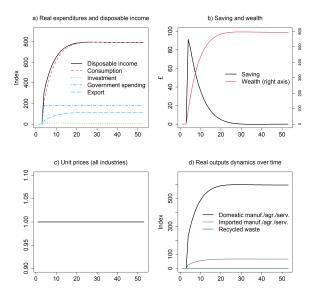
FIGURE 1. SANKEY DIAGRAM OF TRANSACTIONS (IN t = 8)



(Link Campus / Leeds University)

November 24th, 2022

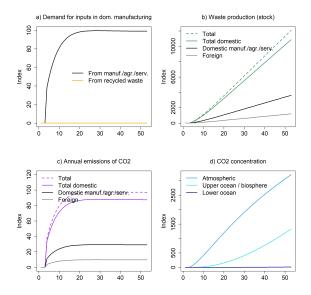
イロト イヨト イヨト イヨト 三日


FIGURE 2. CROSS-INDUSTRY "PHYSICAL" FLOWS (IN $t_s = 5$)

æ

イロト イヨト イヨト イヨト

FIGURE 3. MODEL DYNAMICS: BASELINE


(Link Campus / Leeds University)

November 24th, 2022

크

< □ > < □ > < □ > < □ > < □ >

FIGURE 4. MODEL DYNAMICS: BASELINE (CONT'D)

(Link Campus / Leeds University)

November 24th, 2022

æ

・ロト ・日ト ・ヨト ・ヨト

Nominal value of assets and liabilities

	Households	Firms	Government	Banks	CB	Foreign	Total
Cash	46.43	0	0	0	-46.43	0	0
Advances	0	0	0	0	0	0	0
Deposits	272.29	0	0	-272.29	0	0	0
Loans	0	-36.62	0	36.62	0	0	0
Bills	35.41	0	-367.09	235.67	46.43	49.58	0
Capital stock	0	36.62	0	0	0	0	36.62
Net financial wealth	-354.13	0	367.09	0	0	-49.58	-36.62
Total	0	0	0	0	0	0	0

TABLE 1: Balance sheet, current prices, t = 8 (baseline)

э

MONEY TRANSACTIONS AND CHANGES IN STOCKS

	Households	Firms		Government	Banks	СВ	Foreign	Tot.
		Current	Capital					
Consumption	-522.91	522.91	0	0	0	0	0	0
Investment	0	11.55	-11.55	0	0	0	0	0
Government spending	0	180	0	-180	0	0	0	0
Export	0	73.29	0	0	0	0	-73.29	0
Import	0	-78.77	0	0	0	0	78.77	0
[Value added]	0	[708.97]	0	0	0	0	0	0
Wage bill	322.26	-322.26	0	0	0	0	0	0
Corporate profit	383.80	-383.8	0	0	0	0	0	0
Amortization	0	-1.83	1.83	0	0	0	0	0
Bank profit	4.67	0	0	0	-4.67	0	0	0
Tax revenue	-142.97	Ó	Ó	142.97	0	0	0	Ó
Interests on deposits	4.67	0	0	0	-4.67	0	0	0
Interests on loans	0	-1.08	0	0	1.08	0	0	0
Interests on bills	1.21	0	0	-11.18	8.27	0	1.70	0
Change in cash	-6.93	0	0	0	0	6.93	0	0
Change in advances	0	0	0	0	0	0	0	0
Change in deposits	-38.73	0	0	0	38.73	0	0	0
Change in loans	0	0	9.71	0	-9.71	0	0	0
Change in bills	-5.07	Ó	0	48.20	-29.02	-6.93	-7.18	Ó
Total	0	0	0	0	0	0	0	0

TABLE 2: Transactions-flow matrix, current prices, t = 8 (baseline)

(Link Campus / Leeds University)

November 24th, 2022

イロト イポト イヨト イヨト

INPUT-OUTPUT TABLE

	Manuf.	Agric.	Serv.	Recyc.	Total	Fin. dem.	Tot. output
Manufacturing (production)	67.67	67.66	67.69	0	203.02	248.14	451.16
Agriculture (production)	67.68	67.66	67.69	0	203.03	248.04	451.06
Services (provision)	67.67	67.66	67.69	0	203.02	248.24	451.26
Recycling (production)	0.00	0.00	0.00	0	0.00	0	0
Value added	236.32	236.27	236.37	0	708.97		
~ Disposable income	191.22	191.18	191.26	0	573.65		
~ Tax revenue	47.66	47.65	47.67	0	142.97		
~ Interest payments (-)	-2.55	-2.55	-2.55	0	-7.65		
Import (production)	11.82	11.82	11.82	0	35.45	-35.45	
Total output	451.16	451.06	451.26	0	1353.49	708.97	1353.49

TABLE 3: Input-output matrix, current prices, t = 8 (baseline)

(Link Campus / Leeds University)

EXTEDED INPUT-OUTPUT TABLE

	Manufacturing	Agriculture	Services	Recycling	Total
Disposable labour income	85.94	85.92	85.96	0	257.81
Disposable capital income	105.28	105.26	105.30	0	315.84
Functional income inequality	0.18	0.18	0.18	0	0.18
Total employment	537.10	536.97	537.22	0	1611.30
~ Male employment	268.55	268.49	268.61	0	805.65
~ Female employment	268.55	268.49	268.61	0	805.65
Share of female employment	0.50	0.50	0.50	0	0.50
Waste production	220.97	220.94	221.00	0	662.91
Annual emissions of CO2	21.05	21.05	21.06	0	63.16

TABLE 4: Extended IO matrix, t = 8 (baseline)

(Link Campus / Leeds University)

э

THE CIRCULAR ECONOMY (CE)

- CE = policies that aim at reusing, repairing, sharing, and recycling products and resources to create a closed-loop system, thus minimising waste, pollution, and CO_2 emissions

THE CIRCULAR ECONOMY (CE)

- CE = policies that aim at reusing, repairing, sharing, and recycling products and resources to create a closed-loop system, thus minimising waste, pollution, and CO_2 emissions
- Consider a 4-industry economy: 3 goods + waste. If waste is not recycled, the matrix of technical coefficients is:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & 0\\ a_{21} & a_{22} & a_{23} & 0\\ a_{31} & a_{32} & a_{33} & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}$$

THE CIRCULAR ECONOMY (CE)

- CE = policies that aim at reusing, repairing, sharing, and recycling products and resources to create a closed-loop system, thus minimising waste, pollution, and CO_2 emissions
- Consider a 4-industry economy: 3 goods + waste. If waste is not recycled, the matrix of technical coefficients is:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & 0\\ a_{21} & a_{22} & a_{23} & 0\\ a_{31} & a_{32} & a_{33} & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}$$

- A CE innovation implies a change in technical coefficients...

A B K A B K

- The new matrix will be:

$$\mathbf{A'} = \begin{pmatrix} a'_{11} \leq a_{11} & a'_{12} \leq a_{12} & a'_{13} \leq a_{13} & a'_{14} \geq 0 \\ a'_{21} \leq a_{21} & a'_{22} \leq a_{22} & a'_{23} \leq a_{23} & a'_{24} \geq 0 \\ a'_{31} \leq a_{31} & a'_{32} \leq a_{32} & a'_{33} \leq a_{33} & a'_{34} \geq 0 \\ a'_{41} \geq 0 & a'_{42} \geq 0 & a'_{43} \geq 0 & 0 \end{pmatrix}$$

э

- The new matrix will be:

$$\mathbf{A'} = \begin{pmatrix} a'_{11} \leq a_{11} & a'_{12} \leq a_{12} & a'_{13} \leq a_{13} & a'_{14} \geq 0\\ a'_{21} \leq a_{21} & a'_{22} \leq a_{22} & a'_{23} \leq a_{23} & a'_{24} \geq 0\\ a'_{31} \leq a_{31} & a'_{32} \leq a_{32} & a'_{33} \leq a_{33} & a'_{34} \geq 0\\ a'_{41} \geq 0 & a'_{42} \geq 0 & a'_{43} \geq 0 & 0 \end{pmatrix}$$

- Fall in coefficients defining the quantities of manufacturing and agricultural products and services used as inputs (•)

- The new matrix will be:

$$\mathbf{A'} = \begin{pmatrix} a'_{11} \leq a_{11} & a'_{12} \leq a_{12} & a'_{13} \leq a_{13} & a'_{14} \geq 0\\ a'_{21} \leq a_{21} & a'_{22} \leq a_{22} & a'_{23} \leq a_{23} & a'_{24} \geq 0\\ a'_{31} \leq a_{31} & a'_{32} \leq a_{32} & a'_{33} \leq a_{33} & a'_{34} \geq 0\\ a'_{41} \geq 0 & a'_{42} \geq 0 & a'_{43} \geq 0 & 0 \end{pmatrix}$$

- Fall in coefficients defining the quantities of manufacturing and agricultural products and services used as inputs (•)
- Waste now enters the production process (•)

- The new matrix will be:

$$\mathbf{A'} = \begin{pmatrix} a'_{11} \leq a_{11} & a'_{12} \leq a_{12} & a'_{13} \leq a_{13} & a'_{14} \geq 0\\ a'_{21} \leq a_{21} & a'_{22} \leq a_{22} & a'_{23} \leq a_{23} & a'_{24} \geq 0\\ a'_{31} \leq a_{31} & a'_{32} \leq a_{32} & a'_{33} \leq a_{33} & a'_{34} \geq 0\\ a'_{41} \geq 0 & a'_{42} \geq 0 & a'_{43} \geq 0 & 0 \end{pmatrix}$$

- Fall in coefficients defining the quantities of manufacturing and agricultural products and services used as inputs (•)
- Waste now enters the production process (•)
- Manufacturing and agricultural products and services are used as inputs in waste industry $({\ullowbdarrow})$

The role of the government sector

- There is a tendency for current technical coefficients to converge to target CE values over time:

$$a_{ij} = a_{ij,-1} + \gamma_A \cdot (a'_{ij,-1} - a_{ij,-1})$$
 (28)

イロト イポト イヨト イヨト

The role of the government sector

- There is a tendency for current technical coefficients to converge to target CE values over time:

$$a_{ij} = a_{ij,-1} + \gamma_A \cdot (a'_{ij,-1} - a_{ij,-1})$$
(28)

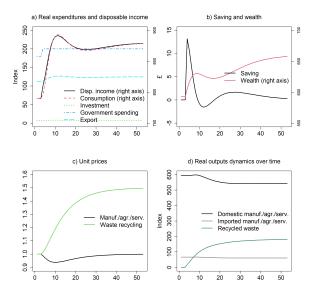
where γ_A is defined as:

$$\gamma_A = \gamma_A^0 + \Gamma_A^T \cdot \sigma \cdot gov_{-1} \tag{29}$$

< E

The role of the government sector

- There is a tendency for current technical coefficients to converge to target CE values over time:

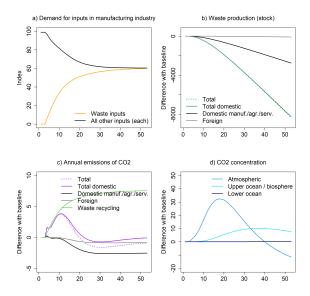

$$a_{ij} = a_{ij,-1} + \gamma_A \cdot (a'_{ij,-1} - a_{ij,-1})$$
(28)

where γ_A is defined as:

$$\gamma_A = \gamma_A^0 + \Gamma_A^T \cdot \sigma \cdot gov_{-1} \tag{29}$$

- The average speed of convergence of technical coefficients to their target values is a linear, positive function of government expenditures

FIGURE 5. CE-ORIENTED GOVERNMENT SPENDING



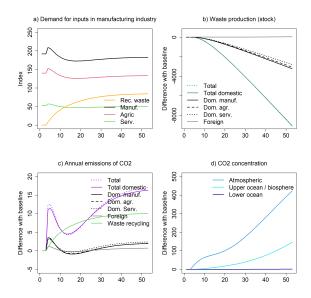
(Link Campus / Leeds University)

November 24th, 2022

크

FIGURE 6. CE-ORIENTED GOVERNMENT SPENDING (CONT'D)

(Link Campus / Leeds University)


November 24th, 2022

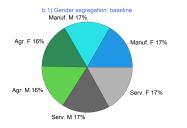
크

< ∃⇒

・ロト ・回ト ・ヨト

FIGURE 6B. USING TECH. COEFFICIENTS FOR DENMARK (-10%)...

(Link Campus / Leeds University)


November 24th, 2022

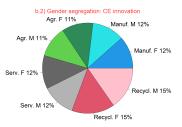
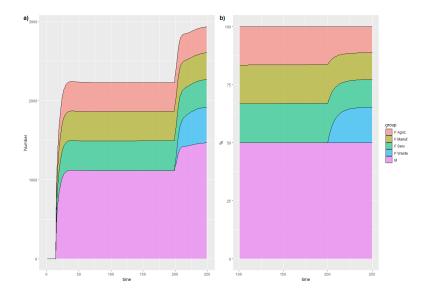

크

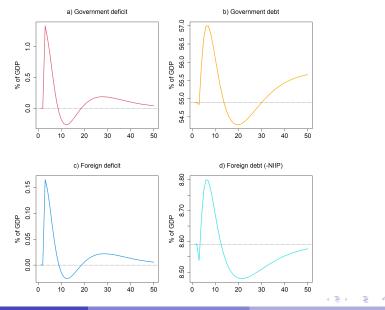
FIGURE 7. INCOME DISTRIBUTION AND GENDER SEGREGATION


イロト イヨト イヨト イヨト 三日

a.2) Income distribution: CE innovation

(Link Campus / Leeds University)

November 24th, 2022


FIGURE 8. GENDER SEGREGATION OVER TIME

크

ヨト イヨト

FIGURE 9. GOVERNMENT AND FOREIGN BALANCES

(Link Campus / Leeds University)

November 24th, 2022

- Simplified though it is, this model provides a benchmark for other (more advanced) IO-SFC models

イロト イポト イヨト イヨト

- Simplified though it is, this model provides a benchmark for other (more advanced) IO-SFC models
- Next steps:

→

- Simplified though it is, this model provides a benchmark for other (more advanced) IO-SFC models
- Next steps:
 - a) Improve behavioral equations (e.g. investment, prices, etc.)

- Simplified though it is, this model provides a benchmark for other (more advanced) IO-SFC models
- Next steps:
 - a) Improve behavioral equations (e.g. investment, prices, etc.)
 - b) Endogenize and improve gender divide

- Simplified though it is, this model provides a benchmark for other (more advanced) IO-SFC models
- Next steps:
 - a) Improve behavioral equations (e.g. investment, prices, etc.)
 - b) Endogenize and improve gender divide
 - c) Introduce D-S mismatch, inventories and market prices

- Simplified though it is, this model provides a benchmark for other (more advanced) IO-SFC models
- Next steps:
 - a) Improve behavioral equations (e.g. investment, prices, etc.)
 - b) Endogenize and improve gender divide
 - c) Introduce D-S mismatch, inventories and market prices
 - d) Test on real data (e.g. exiobase) / estimate coefficients

- Simplified though it is, this model provides a benchmark for other (more advanced) IO-SFC models
- Next steps:
 - a) Improve behavioral equations (e.g. investment, prices, etc.)
 - b) Endogenize and improve gender divide
 - c) Introduce D-S mismatch, inventories and market prices
 - d) Test on real data (e.g. exiobase) / estimate coefficients
 - e) Improve CE experiments (e.g. including durable goods)

- Simplified though it is, this model provides a benchmark for other (more advanced) IO-SFC models
- Next steps:
 - a) Improve behavioral equations (e.g. investment, prices, etc.)
 - b) Endogenize and improve gender divide
 - c) Introduce D-S mismatch, inventories and market prices
 - d) Test on real data (e.g. exiobase) / estimate coefficients
 - e) Improve CE experiments (e.g. including durable goods)
 - f) Turn into 2- or 3-area model

- Simplified though it is, this model provides a benchmark for other (more advanced) IO-SFC models
- Next steps:
 - a) Improve behavioral equations (e.g. investment, prices, etc.)
 - b) Endogenize and improve gender divide
 - c) Introduce D-S mismatch, inventories and market prices
 - d) Test on real data (e.g. exiobase) / estimate coefficients
 - e) Improve CE experiments (e.g. including durable goods)
 - f) Turn into 2- or 3-area model
 - g) Improve solver / perform stability analysis

A B F A B F

Thank you

Download this presentation from:

https://www.marcopassarella.it/wp-content/uploads/Presentation_Pisa_2022.pdf

(Link Campus / Leeds University)

IO-SFC Model

November 24th, 2022