MACROECONOMIC MODELS AND THE ECOSYSTEM

MARCO VERONESE PASSARELLA UNIVERSITY OF L'AQUILA AND UNIVERSITY OF LEEDS

ECOLOGICAL & ENVIRONMENTAL ECONOMICS

- Ecological Economics (EcoE) is an *interdisciplinary field* focused on the relationship between ecological systems and economic activities.
- EcoE emphasises limits to (physical) growth and the need for a balanced interaction between the economy and the environment.
- Environmental economics (EnvE) is a *sub-field of economics* that studies the economic impacts of environmental policies.
- EnvE integrates environmental concerns into market-based models.
- EcoE questions conventional economic wisdom, whereas EnvE uses the same 'neoclassical' conceptual frameworks (externalities, cost-benefit analysis).

THE PIONEERS

- Frederick Soddy (1877-1956) criticised the belief of the economy as a perpetual motion machine, drawing attention to the physical limits.
- Nicholas Georgescu-Roegen (1906-1994) emphasised the entropy law and the limits to economic growth.
- Karl William Kapp (1910-1976) highlighted the social and environmental costs of industrialisation.
- Kenneth Boulding (1910-1993) introduced the concept of 'Spaceship Earth' and advocated for a closed-loop economy.
- Elinor Ostrom (1933-2012) analysed the governance of common-pool resources.
- Herman Daly (1938-2022) developed ideas on steady-state economics (pioneered by the Classical Political Economists).

INTEGRATED ASSESSMENT MODELS (IAMs)

- IAMs are formal models that combine economic, environmental, and social factors.
- They assess the interactions between economic growth and environmental sustainability.
- IAMs are used for studying climate policy impacts and include 'cost-benefit analysis (CBA)' models such as DICE, FUND, and PAGE.
- CBA-IAMs are designed to estimate costs and benefits of climate policies.

THE DICE MODEL

- The DICE model (Dynamic Integrated model of Climate and the Economy) was developed by William Nordhaus in the early 1990s (Nordhaus, 1992).
- It is a CBA-IAM that evaluates the economic impacts of climate change and the costs of climate policies.
- In formal terms, it is a Ramsey growth model plus a damage function, an abatement function, and other equations that link GDP with CO₂ and temperature.
- It is used to derive various warming pathways. The optimum one is a temperature rise of 4degree Celsius by 2150 (damage = 15\$ trillion, abatement cost = 3\$ trillion).
- Policy implications: a tax on carbon emissions is necessary to internalise the external effects of climate change.

A SIMPLIFIED DICE MODEL

- A simplified DICE model structure (in discrete time) includes:
 - I) Production function: $Y_t = A_t \cdot K_{t-1}^{\alpha} \cdot N^{(1-\alpha)}$
 - 2) Technical progress: $A_t = A_{t-1} \cdot (1 + g_t)$,

with:
$$g_t = g_{t-1} \cdot (1 - g_\tau)$$

- 3) Capital stock: $K_t = K_{t-1} \cdot (1 \delta) + I_t$
- 4) Investment: $I_t = Y_t^{net} C_t$
- 5) Emissions function: $E_t = \sigma_t \cdot Y_t^{net} \cdot (1 \mu_t)$,

- with: $\sigma_t = \sigma_{t-1} \cdot (1 g_{\sigma})$
- 6) Carbon concentration: $co2_t = co2_{t-1} + E_t \phi \cdot co2_{t-1}$
- 7) Temperature equation: $T_t = T_{t-1} + \lambda_t \cdot F_t$
- 8) Radiative forcing: $F_t = \zeta \cdot \ln\left(\frac{co2_t}{co2_{pre}}\right)$
- 9) Damage function: $d_t = \theta_1 \cdot T_{t-1} + \theta_2 \cdot T_{t-1}^2$

A SIMPLIFIED DICE MODEL (CONT'D)

9) Effective output: $Y_t^{net} = Y_t \cdot (1 - d_t - c_t^{mit})$ 10) Mitigation costs: $c_t^{mit} = \psi \cdot \mu_t^\beta \cdot Y_t$ 11) Consumption function: $C_t = \alpha_0 + \alpha_1 \cdot Y_{t-1}^{net}$

12) Utility function:
$$U = \frac{C_t^{(1-\eta)} - \frac{1-\eta}{1-\eta}}{1-\eta}$$

13) Welfare: $W = \sum_{t=0}^{T} \frac{U(C_t)}{(1+\rho)^t}$

The DICE model maximises W by adjusting the control variables (such as the mitigation rate or the carbon tax rate) to determine an 'optimal' path for emissions and temperature.

Governments must raise the price of CO_2 emissions, using target carbon prices and penalty tariffs (for those who do not join the 'Climate Club').

FIG. 1 BASELINE SCENARIO (SIMPLIFIED MODEL)

FIG. 2 ALTERNATIVE POLICIES (SIMPLIFIED MODEL)

FIG. 3 TEMPERATURE TRAJECTORIES (ORIGINAL MODEL)

Source: Nordhaus, Nobel Lecture Speach, December 8, 2018

FIG. 4 ABATEMENT AND DAMAGES (ORIGINAL MODEL)

Source: Nordhaus, Nobel Lecture Speach, December 8, 2018

LIMITATIONS OF THE DICE MODEL

- The DICE model has notable limitations (e.g. Keen, 2020) including:
 - Assumes a global, uniform policy response.
 - No room for money and financial sector.
 - Limited focus on social and equity aspects of climate change.
 - Simplified representation of climate feedback mechanisms.
 - Highly sensitive to initial assumptions and discount rate.
 - Assumes that 87% of the economy will be unaffected by climate change.
 - May underestimate extreme climate risks and uncertainties.
 - No room for non-linearities, lock-in effects, tipping points, irreversibility, rebound effects, multiple equilibria, etc.

IS THERE AN ALTERNATIVE?

- Yes, there are 3 alternative methods.
- Leontief Input-Output (IO) models
 - Pros: several variables, cross-industry interdependencies, no pre-defined optimal equilibrium (unlike CGE, DSGE and neoclassical growth model).
 - Cons: static, poor financial side.
- Stock-Flow Consistent (SFC) models
 - Pros: dynamic, no pre-defined optimal equilibrium, national accounting, money and finance, entropy.
 - Cons: homogeneous output, large scale, calibration.
- Heterogenous Interacting Agent-Based (HIAB) models
 - Pros: dynamic, no pre-defined optimal equilibrium, complexity.
 - Cons: black box, mainly moment matching.

ECO IO-SFC MODELS

- Although the origins of ecological macroeconomics can be traced back to the inception of economics itself, early SFC models for economic research did not incorporate the ecosystem.
- This gap was bridged in the late 2010s (Dafermos, Nikolaidi, and Galanis, 2017, 2018; Jackson and Victor, 2015). The primary characteristic of ECO-SFC-Ms is their integration of monetary variables (following Godley and Lavoie, 2007) with physical variables (in line with Georgescu-Roegen, 1971) in a consistent manner. Several ECO-SFC models have been developed since then.
- In contrast, there are currently only a few prototypes of IO-SFC-Ms, despite some progress made in recent years (Berg, Hartley, and Richters, 2015; Jackson and Jackson, 2021, 2023; Valdecantos, 2023, Veronese Passarella, 2023).
- However, this step is essential for analysing the interaction of the ecosystem with the economy (Hardt and O'Neill, 2017) and technical progress (Veronese Passarella, 2023).

ASSUMPTIONS OF MODEL ECO-IO-PC

- The economic section is based on chapter 4 of Godley and Lavoie (2007). PC stands for portfolio choice, because households can hold their wealth in terms of cash and/or government bills.
- Key 'economic' assumptions are as follows:
 - Closed economy
 - Four agents: households, 'firms', government, central bank
 - Two financial assets: government bills and outside money (cash)
 - Fixed prices and zero net profits
 - No banks, no inside money (bank deposits)
 - Two industries
 - Circulating capital only (no inventories, no fixed capital)
 - Fixed technical coefficients
 - | industry = | technique = | product
 - Exogenous composition of consumption and government spending

THE ECOSYSTEM

- The ecosystem is modelled as follows:
 - 2 types of reserves: matter and energy
 - 2 types of energy: renewable and non-renewable
 - Resources are converted into reserves at a certain rate
 - Industrial CO₂ emissions result from the use of non-renewable energy
 - Atmospheric temperature is a growing function of CO_2 emissions
 - Both goods can be durable or non-durable
 - A share of durable goods is discarded in every period
 - Both waste and emissions are produced only by the firm sector

TAB. 1 THE BALANCE-SHEET

	Households	Firms (production)	Central Bank	Government	Σ
Money (cash)	$+H_h$		$-H_s$		0
Bills	$+B_h$		$+B_{cb}$	$-B_s$	0
Balance (net worth)	$-V_h$			$+V_g$	0
Σ	0	0	0	0	0

Notes: A '+' before a magnitude denotes an asset; a '-' denotes a liability.

TAB. 2 THE TRANSACTIONS-FLOW MATRIX

	Households	Firms (production)	Banks	Central Bank	Government	Σ
Consumption	-С	+C				0
Gov. spending		+G			-G	0
Income=GDP	+Y	-Y				0
Mitigation costs	$-C^{mit}$				$+C^{mit}$	0
Interest payments	$+r_{-1} \cdot B_{h,-1}$			$+r_{-1} \cdot B_{cb,-1}$	$-r_{-1} \cdot B_{s,-1}$	0
CB profits				$-r_{-1} \cdot B_{cb,-1}$	$+r_{-1} \cdot B_{cb,-1}$	0
Taxes	-Tax				+Tax	0
Δ in cash	$-\Delta H_h$			$+\Delta H_s$		0
Δ in bills	$-\Delta B_h$			$-\Delta B_{cb}$	$+\Delta B_s$	0
Σ	0	0	0	0	0	0

Notes: A '+' before a magnitude denotes a receipt or a source of funds; a '-' denotes a payment or a use of funds

TAB. 3 THE INPUT-OUTPUT STRUCTURE

		Demand	Final damand		
		Industry 1	Industry 2	- Final demand	Output
uction	Industry 1	$p_1 \cdot a_{11} \cdot x_1$	$p_1 \cdot a_{12} \cdot x_2$	$p_1 \cdot d_1$	$p_1 \cdot x_1$
Prod	Industry 2	$p_2 \cdot a_{21} \cdot x_1$	$p_2 \cdot a_{22} \cdot x_2$	$p_2 \cdot d_2$	$p_2 \cdot x_2$
	Value added	$p_1 \cdot x_1 - (p_1 \cdot a_{11} \cdot x_1 + p_2 \cdot a_{21})$	$p_2 \cdot x_2 \\ - (p_2 \cdot a_{12} \cdot x_2 + p_2 \cdot a_{22})$	$\mathbf{p}^{\mathrm{T}} \cdot \mathbf{d} = Y$	
	Output	$p_1 \cdot x_1$	$p_2 \cdot x_2$		$\mathbf{p}^{\mathrm{T}} \cdot \mathbf{x}$

TAB. 3 THE PHYSICAL FLOW MATRIX

	Natural reserves		
	Matter (Gt)	Energy (EJ)	
Inputs			
Extracted matter	+mat		
Recycled socio-economic stock	+rec		
Renewable energy		+ren	
Non-renewable energy	+cen	+nen	
Oxygen	+02		
Outputs			
Industrial CO ₂ emissions	-emis		
Discarded socio-economic stock	-dis		
Dissipated energy		-en	
Change in socio-economic stock	$-\Delta k_h$		
Total	0	0	

TAB. 3 THE PHYSICAL STOCK-FLOW MATRIX

	Material reserves	Energy reserves	CO ₂ concentration	Socio-economic stock
Initial stock	$k_{m,-1}$	$k_{e,-1}$	<i>CO</i> 2 ₋₁	$k_{h,-1}$
Resources converted into reserves	$+conv_m$	+conv _e		
CO ₂ emissions			+emis	
Production of material goods				$+x_{mat}$
Extraction of matter / use of energy	-mat	-en		
Destruction of socio-economic stock				-dis
Final stock	k _m	k _e	<i>CO</i> 2	k _h

MODEL EQUATIONS

- Macroeconomic equations of Model ECO-IO-SFC
 - 1) Disposable income: $YD_t = Y_t Tax_t + r_{t-1} \cdot B_{h,t-1} C_t^{mit}$
 - 2) Net tax revenue: $Tax_t = \theta \cdot (Y_t + r_{t-1} \cdot B_{h,t-1})$
 - 3) Net wealth: $V_{h,t} = V_{h,t-1} + YD_t C_t$
 - 4) Propensity to consume out of income: $\alpha_1 = \alpha_{10} \alpha_{11} \cdot r_{t-1} \alpha_{12} \cdot \Delta T_t$
 - 5) Money held by households: $H_{h,t} = V_{h,t} B_{h,t}$
 - 6) Bills held by households: $B_{h,t}/V_{h,t} = \lambda_0 + \lambda_1 \cdot r_{t-1} \lambda_2 \cdot YD_t/V_{h,t}$
 - 7) Supply of bills: $B_{s,t} = B_{s,t-1} + G_t Tax_t + r_{t-1} \cdot (B_{s,t-1} B_{cb,t-1}) C_t^{mit}$
 - 8) Supply of money: $H_{s,t} = H_{s,t-1} + \Delta B_{h,t}$
 - 9) Interest rate: $r_t = \bar{r}$
 - 10) Real consumption: $c_t = \alpha_1 \cdot [(YD_t/p_{c,t}) \epsilon_t] + \alpha_2 \cdot (V_{t-1}/p_{c,t-1})$

where:
$$\epsilon_t = \pi_t \cdot \frac{V_{h,t-1}}{p_{c,t}}$$

MODEL EQUATIONS (CONT'D)

- Input-output equations
 - ||) Real demands: $\mathbf{d}_t = \mathbf{\beta}_c \cdot c_t + \mathbf{\beta}_g \cdot g_t$
 - 12) Real gross outputs: $\mathbf{x}_t = \mathbf{A} \cdot \mathbf{x}_t + \mathbf{d}_t$
 - 13) National income: $Y_t = \mathbf{p}_t^T \cdot \mathbf{d}_t$
 - 14) Prices of production: $\mathbf{p}_t = (w/\mathbf{p}\mathbf{r}_t) + (\mathbf{p}_t^T \cdot \mathbf{A}) \cdot (1+m) \cdot (1+d_t)$

15) Average consumer price: $p_{c,t} = \mathbf{p}_t^T \cdot \mathbf{\beta}_c$

16) Average price for the government: $p_{g,t} = \mathbf{p}_t^T \cdot \mathbf{\beta}_g$

- Ecological equations
 - 17) Matter content of goods: $x_{mat,t} = \mathbf{\mu}_{mat}^T \cdot \mathbf{x}_t$
 - 18) Matter extraction $mat_t = x_{mat,t} rec_t$
 - 19) Recycled matter: $rec_t = \rho_{dis} \cdot dis_t$
 - 20) Discarded socio-economic stock: $dis_t = \mathbf{\mu}_{mat}^T \cdot (\boldsymbol{\zeta}_{dc} \odot \mathbf{dc}_{t-1})$

MODEL EQUATIONS (CONT'D)

21) Stock of durable goods: $\mathbf{dc}_t = \mathbf{dc}_{t-1} + \mathbf{\beta}_c \cdot c_t - \mathbf{\zeta}_{dc} \cdot \mathbf{dc}_{t-1}$

- 22) Socioeconomic stock: $k_{h,t} = k_{h,t-1} + x_{mat,t} dis_t$
- 23) Waste: $wa_t = mat_t \Delta k_{h,t}$

24) Total energy required for production: $en_t = \boldsymbol{\varepsilon}_{en}^T \cdot \mathbf{x}_t$

- 25) Renewable energy: $ren_t = \boldsymbol{\varepsilon}_{en}^T \cdot (\mathbf{a}_{en} \odot \mathbf{x}_t)$
- 26) Non-renewable energy: $nen_t = en_t ren_t$
- 27) CO₂ emissions: $emis_t = \beta_e \cdot nen_t \cdot (1 \mu)$
- 28) Cumulative emissions: $co2_t = co2_t + emis_t$
- **29)** Atmosperic temperature: $T_t = [1/(1 fnc)] \cdot tcre \cdot co2_t$
- 30) Matter reserves: $k_{m,t} = k_{m,t-1} + conv_{m,t} mat_t$
- 31) Matter resources converted into reserves: $conv_{m,t} = \sigma_m \cdot res_{m,t}$
- 32) Matter resources: $res_{m,t} = res_{m,t-1} conv_{m,t}$
- 33) Carbon mass of non-renewable energy: $cen_t = emis_t/car$

MODEL EQUATIONS (CONT'D)

- 34) Mass of oxygen: $o2_t = emis_t cen_t$
- **35)** Energy reserves: $k_{e,t} = k_{e,t-1} + conv_{e,t} en_t$

36) Energy resources converted into reserves: $conv_{e,t} = \sigma_e \cdot res_{e,t}$

- **37**) Energy resources: $res_{e,t} = res_{e,t-1} conv_{e,t}$
- **38**) Mitigation costs: $C_t^{mit} = \psi \cdot \mu^{\beta} \cdot Y_t$

39) Damage function: $d_t = \theta_1 \cdot T_{t-1} + \theta_2 \cdot T_{t-1}^2$

- Note: some ecological equations (emissions, carbon concentration, temperature and damages) resemble those used by the DICE model.
- The main difference is the absence of a pre-defined optimal equilibrium driving model dynamics, which is only anchored by the stock-flow consistency requirements.
- The complete list of model equations of ECO-IO-PC and the related description are available <u>here</u>.

FIG. 5 A SNAPSHOT OF THE TRANSACTIONS IN PERIOD t

FIG. 6 CROSS-INDUSTRY INTERDEPENDENCIES IN PERIOD t

FIG. 7 ECOLOGICAL CONSTRAINTS IN PERIOD t (2 AREAS)

Renewable energy sources used by EU	
Renewable energy sources used by RoW	
Non-renewable energy sources used by EU	Dissipated energy of EU
Non-renewable energy sources used by RoW	Dissipated energy of RoW
Extractions associated with EU	CO2 emissions of EU CO2 emissions of RoW
	Discarded stock of EU Discarded stock of RoW
	Change in socio-economic stock of EU
Extractions associated with RoW Recycled matter used by EU Recycled matter used by RoW	Matter use Change in socio-economic stock of RoW
Carbon mass of non-renewable energy in EU Carbon mass of non-renewable energy in RoW Oxygen associated with EU Oxygen associated with RoW	

PLAYING WITH MODEL ECO-IO-PC

ECO-IO-SFC Model

Open the interactive model

FINAL REMARKS

- CBA-IAMs are extensions of neoclassical growth models, aimed at identifying optimal pathways (welfare maximisation, cost minimisation).
- ECO-IO-SFC Ms offer an alternative approach to modelling economy-ecosystem interactions. These models do not aim to identify optimal trajectories but enable comparison of different scenarios across various dimensions.
- Main preliminary findings:
 - There is no single optimal policy for everyone.
 - Rebound effects and other unexpected outcomes are likely.
 - Effective green transition policies require interventions that support the most affected individuals, social classes, and countries.
 - Market forces alone are unlikely to achieve minimum green targets. The government must step in.

THANK YOU

marco.veronesepassarella@univaq.it

Scan here to access the presentation materials

